Kinetics and regulation of a Ca2+-activated Cl- conductance in mouse renal inner medullary collecting duct cells

S. H. Boese, O. Aziz, N. L. Simmons, M. A. Gray


Using the whole cell patch-clamp technique, a Ca2+-activated Cl- conductance (CaCC) was transiently activated by extracellular ATP (100 μM) in primary cultures of mouse inner medullary collecting duct (IMCD) cells and in the mouse IMCD-K2 cell line. ATP also transiently increased intracellular Ca2+ concentration ([Ca2+]i) from ∼100 nM to peak values of ∼750 nM in mIMCD-K2 cells, with a time course similar to the ATP-induced activation and decay of the CaCC. Removal of extracellular Ca2+ had no major effect on the peak Cl- conductance or the increase in [Ca2+]i induced by ATP, suggesting that Ca2+ released from intracellular stores directly activates the CaCC. In mIMCD-K2 cells, a rectifying time- and voltage-dependent current was observed when [Ca2+]i was fixed via the patch pipette to between 100 and 500 nM. Maximal activation occurred at ∼1 μM [Ca2+]i, with currents losing any kinetics and displaying a linear current-voltage relationship. From Ca2+-dose-response curves, an EC50 value of ∼650 nM at -80 mV was obtained, suggesting that under physiological conditions the CaCC would be near fully activated by mucosal nucleotides. Noise analysis of whole cell currents in mIMCD-K2 cells suggests a single-channel conductance of 6–8 pS and a density of ∼5,000 channels/cell. In conclusion, the CaCC in mouse IMCD cells is a low-conductance, nucleotide-sensitive Cl- channel, whose activity is tightly coupled to changes in [Ca2+]i over the normal physiological range.

  • renal collecting duct
  • calcium-activated chloride conductance
  • intracellular calcium
View Full Text