Renal Physiology


Angiotensin (ANG)-(1–7) is known to attenuate diabetic nephropathy; however, its role in the modulation of renal inflammation and oxidative stress in type 2 diabetes is poorly understood. Thus in the present study we evaluated the renal effects of a chronic ANG-(1–7) treatment in Zucker diabetic fatty rats (ZDF), an animal model of type 2 diabetes and nephropathy. Sixteen-week-old male ZDF and their respective controls [lean Zucker rats (LZR)] were used for this study. The protocol involved three groups: 1) LZR + saline, 2) ZDF + saline, and 3) ZDF + ANG-(1–7). For 2 wk, animals were implanted with subcutaneous osmotic pumps that delivered either saline or ANG-(1–7) (100 ng·kg−1·min−1) (n = 4). Renal fibrosis and tissue parameters of oxidative stress were determined. Also, renal levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), ED-1, hypoxia-inducible factor-1α (HIF-1α), and neutrophil gelatinase-associated lipocalin (NGAL) were determined by immunohistochemistry and immunoblotting. ANG-(1–7) induced a reduction in triglyceridemia, proteinuria, and systolic blood pressure (SBP) together with a restoration of creatinine clearance in ZDF. Additionally, ANG-(1–7) reduced renal fibrosis, decreased thiobarbituric acid-reactive substances, and restored the activity of both renal superoxide dismutase and catalase in ZDF. This attenuation of renal oxidative stress proceeded with decreased renal immunostaining of IL-6, TNF-α, ED-1, HIF-1α, and NGAL to values similar to those displayed by LZR. Angiotensin-converting enzyme type 2 (ACE2) and ANG II levels remained unchanged after treatment with ANG-(1–7). Chronic ANG-(1–7) treatment exerts a renoprotective effect in ZDF associated with a reduction of SBP, oxidative stress, and inflammatory markers. Thus ANG-(1–7) emerges as a novel target for treatment of diabetic nephropathy.

  • kidney
  • neutrophil gelatinase-associated lipocalin
  • renin-angiotensin system
  • oxidative stress
View Full Text