Acute study of interaction among cadmium, calcium, and zinc transport along the rat nephron in vivo

O. Barbier, G. Jacquilet, M. Tauc, P. Poujeol, and M. Cougnon

Unité Mixte de Recherche-Centre National de la Recherche Scientifique 6548, Université de Nice-Sophia Antipolis, 06108 Nice Cedex 2, France

Submitted 5 April 2004; accepted in final form 22 July 2004

Barbier, O., G. Jacquillet, M. Tauc, P. Poujeol, and M. Cougnon. Acute study of interaction among cadmium, calcium, and zinc transport along the rat nephron in vivo. Am J Physiol Renal Physiol 287: F1067–F1075, 2004.—This study investigates the effects of acute CdCl2 (5 μM) intoxication on renal function and characterizes the transport of Ca2+, Cd2+, and Zn2+ in the proximal tubule (PT), loop of Henle (LH), and terminal segments of the nephron (DT) using whole kidney clearance and nephron microinjection techniques. Acute Cd2+ injection resulted in renal losses of Na+, K+, Ca2+, Mg2+, PO42-, and water, but the glomerular filtration rate remained stable. 45Ca microinjections showed that Ca2+ reabsorption in the DT was strongly inhibited by Cd2+. Ca2+ transport along the LH; and terminal segments of the nephron was minimally affected by Cd2+. In the PT, 95% of injected amounts of 109Cd were taken up. 109Cd fluxes were inhibited by Gd3+ (20 μM), Cd3+ (100 μM), and La3+ (1 mM), whereas nifedipine (20 μM) had no effect. 109Cd and 65Zn microinjections showed that each segment of nephron was permeable to these metals. In the PT, 95% of injected amounts of 109Cd were taken up. 109Cd fluxes were inhibited by Gd3+ (20 μM), Cd3+ (100 μM), and Fe2+ (100 μM) in all nephron segments. Burimetanide (50 μM) only inhibited 109Cd fluxes in LH; Zn2+ (50 and 500 μM) inhibited transport of 109Cd in DT. In conclusion, these results indicate that 1) the renal effects of acute Cd2+ intoxication are suggestive of proximal tubulopathy; 2) Cd2+ inhibits Ca2+ reabsorption possibly through the epithelial Ca2+ channel in the DT, and this blockade could account for the hypercalciuria associated with Cd2+ intoxication; 3) the PT is the major site of Cd2+ reabsorption; 4) the paracellular pathway and DMT1 could be involved in Cd2+ reabsorption along the LH; 5) DMT1 may be one of the major transporters of Cd2+ in the DT; and 6) Zn2+ is taken up along each part of the nephron and its transport in the terminal segments could occur via DMT1.

heavy metals; epithelial calcium channel; divalent metal transporter 1; kidney

Cadmium (Cd2+) is one of the most commonly found toxic metals present in our environment. The major sources of exposure to Cd2+ are contaminated food and water, tobacco, and industrial fumes and dusts (16). Cd2+ accumulates in the body, and chronic exposure causes severe nephrotoxicity in humans (16) and animals (2, 4). The renal dysfunction may be due to proximal tubular damage affecting the passive paracellular pathway (14, 27) and decreasing active transcellular ion transport (30). With the use of in vitro models, deleterious effects of Cd2+ have been described on several solute transporters, such as stretch-activated ion channels (24), the epithelial Ca2+ channel (ECaC) transporter (32), the NaPi-II transporter (33), the Na/glucose transporter (33), and the NaSi-1 transporter (34). These acute effects of Cd2+ suggest the involvement of ion transporters in Cd2+-induced nephropathy. Therefore, the question arises as to whether these transporters are affected in vivo after Cd2+ exposure. To answer this question, studies have been performed in animal models chronically intoxicated with Cd2+ (22, 31). Unfortunately, severe intoxication induces renal solute wasting, as well as nephrotoxic damage to glomeruli and proximal tubular structures, which could mask more subtle alterations in transporter function.

It has been clearly demonstrated that free cytosolic Cd2+ is responsible for the toxicological damage to cells and that the bound form of Cd, complexed with proteins like albumin and metallothionein, plays a protective role (8). Cd2+ increases urine Ca2+ excretion (28), which can affect bone metabolism and cause severe bone pathology (29). A blockade of the distal Ca2+ transporter (ECaC) was proposed to explain Cd2+-induced hypercalciuria and associated renal stone formation (26). In light of these findings, it is evident that Cd2+ may interact with several different transporters. Such interactions suggest the participation of pathways for free Cd2+ reabsorption. Therefore, the free ionized Cd2+ might be, with CdMT, Cd-GSH, and Cys-Cd, one of the reabsorbed forms of Cd. Although the uptake of free Cd2+ accounts for a minor portion of cellular Cd2+ uptake in vivo, it could be of interest to identify the transporters involved because the Cd2+ complexed to small peptides may be released at the brush border and then taken up as a free ion by renal cells (27). For this purpose, we have chosen to use acute perfusion of Cd2+ and microinjections of 109Cd to study the renal handling of Cd. These protocols minimized the participation of bound Cd forms in Cd reabsorption because the de novo metallothionein or glutathione synthesis induced by Cd2+ takes several hours and very little Cd2+-albumin complexes are present in the tubular fluid.

Initial data were reported by Felley-Bosco and Diezi (9). Using in vivo micropuncture and microinjection techniques in the rat, these authors showed that Cd2+ was mainly reabsorbed in the proximal tubule and that a sodium-cysteine cotransporter was involved. Since their study, a divalent metal transporter (DMT1) has been cloned (18) and immunolocalized to the apical membrane of the thick ascending limb (TAL), distal tubule (DT), and the cortical collecting tubule (CCT) of the rat nephron (11), suggesting a role for this transporter in the renal handling of divalent metal cations. In a recent study, Wareing et al. (34) have clearly demonstrated in the rat that DMT1 can transport Fe2+ along the loop of Henle (LH) and distal tubule. Besides Fe2+, DMT1 also transports Cd2+ and Zn2+ (18). In
view of these findings, we decided to re-investigate Cd\(^{2+}\) transport along the rat nephron and its relationship to other cations.

MATERIALS AND METHODS

Three types of experimental techniques were used: clearance, tracer microinjection, and micropuncture. The experiments were carried out in female Wistar rats weighing 180–220 g. The animals were fed a standard laboratory diet. They had free access to water until the start of the experiment and were starved for 18 h before the surgical procedure. Anesthesia was induced by injection of pentobarbital sodium (Nembutal, 5 mg/100 g body wt ip) and maintained by additional 1-mg doses administered when necessary. The animals were then placed on a heated table to maintain their body temperature between 37 and 39°C. A tracheotomy was performed leaving the thyroid gland untouched. One catheter (PE-20) was inserted into the right jugular vein for perfusion of experimental solutions and another (PE-10) into the left ureter for urine collection. For clearance experiments, a third catheter (PE-50) was inserted into the right femoral artery for blood sampling and arterial blood pressure recording (Research BP Transducer, Harvard Apparatus). For tracer microinjection experiments, the kidney was ventrally exposed as described by Gottschalk and Mylle (14). The use of animals was in accordance with the ILAR Guide for Care and Use of Laboratory Animals.

Clearance Experiments

These experiments were performed to analyze the effect of an acute load of Cd\(^{2+}\) on whole kidney function. Because it is necessary to induce diuresis when microinjection techniques are used, it was important to determine the effect of Cd\(^{2+}\) under the chosen diuretic conditions. Therefore, clearance experiments were carried out in rats intravenously (iv) infused with a 2% NaCl solution at a rate of 100 \(\mu\)l/min. \(^{3}\)Hmetoxy-inulin (0.53 Ci/mmol) was used to measure the glomerular filtration rate (GFR). Urine samples were collected serially every 10 min, and blood samples were taken halfway through each urine collection. In all experiments a loading dose of \(^{3}\)Hinulin (4 \(\mu\)Ci) was given iv, followed by a continuous infusion of 0.4 \(\mu\)Ci/min for the duration of each experiment. Urine collection began 1 h after the administration of the \(^{3}\)Hinulin priming dose. After three control clearance periods, Cd\(^{2+}\) was added and infused continuously at a rate of 880 \(\mu\)M/min to maintain a plasma concentration of \(-5 \mu M\). After a 40-min equilibration period, urine was collected during three additional 10-min clearance periods.

Tracer Microinjections

Droplets of isotonic buffered solutions containing traces of \(^{3}\)Hinulin and the radioactive isotope of the divalent metal ion under investigation were prepared for injection into early proximal, late proximal, early distal, or late DT sites. The volume injected was 3 nl, and the duration of the injection ranged between 20 and 90 s. The method used to identify the structure was identical to that reported previously (21). Briefly, the tubule segment was selected from its shape, location, and refringence and identified by injecting a small volume (\(-2 \text{ nl} \) of isotonic NaCl solution colored with 0.05% of erioglaucine dye) just before the microinjection. At the start of each microinjection, four 60-s, three 1-min, and two 2-min urine samples were collected serially directly into counting vials containing 2 ml of scintillant. This was followed by a 2-min urine collection to determine the urine flow rate. The amount of injected radioactivity was measured by counting the radioactivity of the injected droplet. Background in the urine was calculated from the activity of the urine samples collected just before each microinjection. Urine recovery for each tracer was expressed as a percentage of the amount injected. This amount in the urine reflects reabsorption of the tracer in all downstream segments.

Control of Injection Site

To ensure that the chosen microinjection site was reproducible from one tubule to another, we have performed parallel micropuncture experiments to measure the F/P inulin at the injection site. Diuretic rats were continuously infused with \(^{3}\)Hinulin (3 \(\mu\)Ci/min), and, after a 1-h equilibration period, tubular fluid was collected for 1–2 min in proximal and distal tubules identified as described above.

Late Proximal Micropunctures

The protocol of \(^{3}\)Hinulin infusion and the method used to identified the structure were the same as that for the microinjection technique. Late proximal tubular fluid samples were collected, under free-flow conditions. Each collection lasted 60–120 s. Three successive 30-min clearance periods were performed to determine \(^{3}\)Hinulin and Cd\(^{2+}\) concentrations in urine and plasma. Ultrafiltrable plasma Cd\(^{2+}\) concentration was estimated by measuring Cd\(^{2+}\) after the plasma was spun through a 30-kDa filter (Centrifree microporation system; Amicon).

Analytic Procedure

\(^{3}\)H, \(^{109}\)Cd, \(^{45}\)Ca, and \(^{65}\)Zn radioactivities were measured by liquid scintillation counting (Packard). In plasma and urine samples, Na\(^{+}\), K\(^{+}\), Mg\(^{2+}\), Ca\(^{2+}\), Cl\(^{-}\), and P, concentrations were determined by ion exchange chromatography (AS50/BioLC, Dionex), and Cd\(^{2+}\) was measured by atomic absorption spectrometry using a Zeeman furnace system (Solaar 969, Thermo Optek).

Student’s \(t\)-test was used for statistical analysis. The data are expressed as means \(\pm\) SE. \(P < 0.05\) was considered significant.

Radioactive Material

All radioactive elements were produced by Amersham Pharmacia Biotech UK: \(^{3}\)Hinulin (TRA324), specific radioactivity 120 \(\mu\)Ci/mg inulin; calcium-45 (CES.3), specific radioactivity 5–50 mCi/mg \(^{45}\)Ca; cadmium-109 (CUS.1), specific radioactivity 50–1,000 \(\mu\)Ci/\(\mu\)g \(^{109}\)Cd; and zinc-65 (ZAS.2), specific radioactivity 83 \(\mu\)Ci/mg \(^{65}\)Zn.

RESULTS

Clearance Experiments

The effect of an acute load of Cd\(^{2+}\) on whole kidney function was assessed using the clearance technique. Arterial blood pressure was similar during the control and Cd\(^{2+}\) infusions (126.2 \(\pm\) 0.5 and 128.5 \(\pm\) 4.4 mmHg, respectively; \(P > 0.05\), \(n = 8\)). Sham-treated animals did not show any significant changes over time in plasma Na\(^{+}\), K\(^{+}\), Ca\(^{2+}\), Cl\(^{-}\), or PO\(_4\)\(^{2-}\) concentrations, whereas plasma Mg\(^{2+}\) concentration decreased slightly during the saline infusion (Fig. 1). Concomitantly, urine flow rate, GFR, and electrolyte fractional excretion (FE) remained stable (Fig. 2). In experimental animals, the infusion of Cd\(^{2+}\) increased plasma Cd\(^{2+}\) concentration to 3.03 \(\pm\) 0.32 \(\mu\)M and was associated with a significant fall in plasma Ca\(^{2+}\), Mg\(^{2+}\), K\(^{+}\), Na\(^{+}\), and PO\(_4\)\(^{2-}\) concentrations (Fig. 1); although urine flow rate increased and GFR was unchanged (Fig. 2). Furthermore, Cd\(^{2+}\) infusion induced significant increases in the FE of Ca\(^{2+}\), Mg\(^{2+}\), K\(^{+}\), Na\(^{+}\), Cl\(^{-}\), and PO\(_4\)\(^{2-}\) (Fig. 2); most of the filtered Cd\(^{2+}\) was reabsorbed by the kidney (FE = 0.0018 \(\pm\) 0.0005%, \(n = 15\)).

Tracer Microinjection Experiments

First, as shown in Fig. 3A, there was a correlation between the F/P inulin values and the injection site, indicating that the morphological criteria used to estimate the injection site did
identify the tubular segment appropriately. Furthermore, in all experiments no site of injection modified the [3H]inulin urine recovery, which was similar to the amount injected (Table 1; see Tables 3 and 4). In a separate series (n = 3, Fig. 3B), we evaluated nonspecific binding of the tracer to plasma membranes. No change in urine recovery of radioactivity from background occurred after the perfusion of a high concentration of the nonradioactive ion after 109 Cd or 45 Ca microinjection.

45 Ca. Because it has been postulated that Cd 2+ may affect Ca 2+ reabsorption, it was first necessary to investigate the tubular transport of Ca 2+ in the different nephron segments. Results of 45 Ca microinjections are shown in Table 1. Ca 2+ concentration of the injected solution was 4.5 mM. In this experimental series, the Ca 2+ injection rate ranged between 1 and 3 pmol/min, indicating that Ca 2+ was introduced into the tubular lumen at tracer doses, because from free-flow micropuncture studies it can be calculated that the mean flow rate of Ca 2+ varies from 80 pmol/min at the beginning of the proximal tubule to 15 pmol/min at the end of the DT in rats (30). In our experiments, the total amount of Ca 2+ injected did not significantly increase the normal free-flow delivery rate of Ca 2+ to the segment located downstream of the injection site, because no significant correlation between the injection rate and the 45 Ca recoveries has been found and the cumulative curves of [3H]inulin and 45 Ca excretions show that both isotopes appeared in urine and reached their maximum excretion in parallel (data not shown). Table 1 shows that recovery of 45 Ca, expressed as a percentage of 45 Ca microinjected, depended on the injection site: the more proximal the injection, the lower the 45 Ca urine recovery. The differences between the 45 Ca recovery at each microinjection site allow an estimate of the unidirectional 45 Ca fluxes (expressed as percent delivered load) and provide a measure of Ca 2+ reabsorption occurring between the early and late proximal tubules, the late proximal and early DTs (including the LH), the early and late DTs
[corresponding to the distal convoluted tubule (DCT)], and the late DT and final urine [including the connecting tubule (CNT) and the convoluted tubule (CT)]. This mode of calculation is valid for calcium because injected 45Ca was in a tracer-dose condition and because a sufficient load of filtered Ca$^{2+}$ was delivered to each segment downstream of the proximal tubule. Under control conditions, >65% of the injected Ca$^{2+}$ was reabsorbed between the late proximal and the early DT, whereas >20% was reabsorbed between the early and late DTs (Tables 1 and 2). The addition of Cd$^{2+}$ (20 μM), Gd$^{3+}$ (100 μM), or La$^{3+}$ (1 mM) significantly increased 45Ca urine recovery when microinjections were performed at the early proximal tubule site (Table 1). This increase was mainly due to a decrease in unidirectional 45Ca flux between the early and late proximal tubule.

Fig. 2. Effects of 5 μM Cd$^{2+}$ infusion on glomerular filtration (expressed in ml/min), U/P inulin, urine flow rate (expressed in μl/min), and fractional excretions (FE) of Ca$^{2+}$, Mg$^{2+}$, Na$^{+}$, K$^{+}$, Cl$^{-}$, and PO$_4^{3-}$ (expressed %) in Wistar rats during mild diuretic conditions. ● Control rats ($n = 5$); ○, experimental rats ($n = 5$) exposed to Cd$^{2+}$ throughout the 30-min period. *Time 0 corresponds to the start of the first urine collection period after 1 h of equilibration. Values are means ± SE calculated for each clearance period, refer to the difference in the change in glomerular filtration rate (GFR), U/P inulin, urine flow rate, and fractional excretions between periods without and with Cd$^{2+}$ by Student’s t-test (*$P < 0.05$, **$P < 0.001$).
late distal segments (Table 2). In contrast, nifedipine did not modify \(^{45}\)Ca recovery at each injection site (Tables 1 and 2). The percent inhibition of distal \(^{45}\)Ca reabsorption produced by each agent used is shown in Fig. 4.

\(^{109}\)Cd. The same concentration of \(\text{Cd}^{2+}\) (5 \(\mu\)M) was used as for a clearance study. This concentration corresponded to that determined during mild chronic exposure (36, 38). The absence of a significant correlation between the \(\text{Cd}^{2+}\) injection rates and urine recovery (data not shown) has been verified, indicating that under these conditions, the percentage of urine \(^{109}\)Cd recovery reflected \(\text{Cd}^{2+}\) unidirectional reabsorption. The urine excretion profiles of \([\text{H}]\)inulin and \(^{109}\)Cd were roughly parallel (data not shown) at the three injection sites. Table 3 shows that the urine \(^{109}\)Cd recovery after early proximal microinjection was close to 5\% of the amount injected, indicating an important transport of \(\text{Cd}^{2+}\) in segments beyond this site. The \(^{109}\)Cd excretion was greater when the injections were performed in late proximal and early DTs. Using \(\text{Cd}^{2+}\) concentrations ranging between 0.005 and 50 mM, microinjections indicate saturation at high \(\text{Cd}^{2+}\) concentrations in each segment (Fig. 5). These results showed that the segment between early and late proximal sites exhibited an important reabsorptive capacity for \(\text{Cd}^{2+}\) because in the presence of 50 mM \(\text{Cd}^{2+}\), 45\% of Cd is reabsorbed. In contrast, the DT exhibited a lower reabsorptive capacity because 5 mM \(\text{Cd}^{2+}\) is sufficient to saturate the uptake in this segment. To characterize further the transport mechanisms involved in \(^{109}\)Cd fluxes, microinjections were performed in the presence of different cations (Table 3). Unfortunately, in contrast to calcium, the difference between the \(^{109}\)Cd recovery at each microinjection site could not be used to estimate the unidirectional \(^{109}\)Cd in each segment of the nephron flux. This is due to the fact that \(^{109}\)Cd microinjections were not performed in the tracer-dose condition (an endogenous pool of \(\text{Cd}^{2+}\) does not exist) and because most of \(\text{Cd}^{2+}\) was taken up by the proximal tubule (see micropuncture results below) so that the amount of \(^{109}\)Cd delivered to the downstream segments after early proximal microinjection was too low to allow mathematical calculation performed for calcium. Therefore, the results were interpreted on the basis of \(^{109}\)Cd urinary recovery after microinjection in early proximal, late proximal, and early DT, respectively. In early, late proximal, and early distal microinjections, the addition of \(\text{Gd}^{3+}\) (90 \(\mu\)M), \(\text{Co}^{2+}\) (100 \(\mu\)M), or \(\text{Fe}^{2+}\) (100 \(\mu\)M) induced a strong increase in \(^{109}\)Cd urine excretion. These data are consistent with a decrease in unidirectional \(^{109}\)Cd fluxes in proximal tubule, LH, and terminal nephron segments (Table 3). The effect of \(\text{Zn}^{2+}\) is more complicated, because it clearly depends on the concentration used: at a low concentration (50 \(\mu\)M), the addition of \(\text{Zn}^{2+}\) increased \(^{109}\)Cd excretion only in early distal injections; at a high concentration (500 \(\mu\)M), \(\text{Zn}^{2+}\) enhanced \(^{109}\)Cd excretion at every injected site. The diuretic bumetanide had an effect only at late proximal sites, suggesting that blockade of the \(\text{Na}^{+}-\text{K}^{+}-\text{2Cl}^{-}\) transporter in the LH induces a decrease in \(^{109}\)Cd transport in this segment (Table 3).

\(\text{Zn}^{2+}\). As for \(^{45}\)Ca and \(^{109}\)Cd, \(\text{Zn}^{2+}\) microinjections were performed in early, late proximal, and early DTs. With the specific radioactivity of \(^{65}\)Zn available commercially, the minimal concentration in the microinjected solution ranged between 17 and 34 \(\mu\)M, which is higher than the plasma free \(\text{Zn}^{2+}\) concentration (15 \(\mu\)M). The absence of a positive correlation between the injection rate and \(^{65}\)Zn urine recovery satisfies tracer-dose requirements (data not shown). As shown in Table 4, \(^{65}\)Zn urine excretion increased from early proximal to early distal microinjection sites, indicating significant \(\text{Zn}^{2+}\) reabsorption along the proximal tubule, LH, and terminal nephron segments. \(^{65}\)Zn microinjections performed in the presence of 50 \(\mu\)M \(\text{Cd}^{2+}\) showed a slight inhibitory effect of \(\text{Cd}^{2+}\) on zinc transport along the early proximal tubule and the LH (Table 4). These results also indicate an important inhibition of \(^{65}\)Zn transport along the terminal segments of the nephron.

\textbf{Cd Micropuncture Experiments}

Micropuncture experiments were performed to investigate the amount of Cd delivered to the late proximal tubule during
The aim of this study was to investigate specifi-
cally the transport of free Cd\(^{2+}\) in each segment of the nephron and to identify the putative transporters involved in the renal transport of Cd\(^{2+}\). First, it was important to check the effect of acute Cd\(^{2+}\) intoxication on renal function. To do this, clearance experiments were carried out and infusion of CdCl\(_2\) increased plasma free Cd\(^{2+}\) concentration to 3.03 ± 0.32 µM. Such a Cd\(^{2+}\) concentration corresponds to a 90 µg/kg body wt, equivalent to a low dose of acute Cd\(^{2+}\) intoxication (21). During Cd\(^{2+}\) infusion, GFR remained stable, indicating that glomerular function was unaffected. This is in agreement with light microscopy studies by Uriu et al. (31) showing that a single intraperitoneal dose of 0.4 mg/kg Cd\(^{2+}\) did not cause any identifiable glomerular pathology. Acute infusion of Cd\(^{2+}\) was associated with an increase in urine flow rate, a significant increase in FE of all the ions measured, and a parallel decrease in their plasma concentrations. The rapid and excessive renal losses of PO\(_4^{3-}\), Na\(^+\), K\(^+\), Mg\(^{2+}\), Ca\(^{2+}\), and water were probably due to an effect of Cd\(^{2+}\) mainly on the proximal tubule, and the fall in plasma ion concentrations probably relates to this. Thus, although Cd\(^{2+}\) is already known to cause a Fanconi-like wasting of many solutes normally reabsorbed by

Table 1. \(^{45}\)Ca recovery in urine after microinjection along the nephron

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>+Cadmium (20 µM)</th>
<th>+Gadolinium (100 µM)</th>
<th>+Lanthanum (1 mM)</th>
<th>+Nifedipine (20 µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early proximal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%(^{45})Ca</td>
<td>3.4 ± 0.5 (n = 8)</td>
<td>14.1 ± 1.3 (n = 18, P < 0.001)</td>
<td>11.0 ± 1.4 (n = 21, P < 0.001)</td>
<td>8.5 ± 0.7 (n = 17, P < 0.001)</td>
<td>6.9 ± 1.1 (n = 13, P < 0.001)</td>
</tr>
<tr>
<td>%[^3]Hjinulin</td>
<td>95.0 ± 2.4</td>
<td>98.8 ± 1.7</td>
<td>99.3 ± 0.4</td>
<td>96.5 ± 1.1</td>
<td>96.5 ± 1.3</td>
</tr>
<tr>
<td>Late proximal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%(^{45})Ca</td>
<td>6.7 ± 1.0 (n = 7)</td>
<td>17.7 ± 1.5 (n = 22, P < 0.001)</td>
<td>14.5 ± 2.5 (n = 9, P = 0.02)</td>
<td>10.8 ± 0.7 (n = 10, P < 0.01)</td>
<td>9.5 ± 1.1 (n = 15, NS)</td>
</tr>
<tr>
<td>%[^3]Hjinulin</td>
<td>98.7 ± 1.3</td>
<td>99.3 ± 1.4</td>
<td>98.4 ± 0.8</td>
<td>98.6 ± 0.5</td>
<td>97.7 ± 1.0</td>
</tr>
<tr>
<td>Early distal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%(^{45})Ca</td>
<td>72.8 ± 2.9 (n = 15)</td>
<td>89.5 ± 2.8 (n = 17, P < 0.001)</td>
<td>95.9 ± 1.5 (n = 14, P < 0.001)</td>
<td>84.3 ± 2.3 (n = 17, P < 0.01)</td>
<td>71.4 ± 7.5 (n = 4, NS)</td>
</tr>
<tr>
<td>%[^3]Hjinulin</td>
<td>96.3 ± 1.0</td>
<td>100.0 ± 0.5</td>
<td>93.7 ± 1.4</td>
<td>99.3 ± 0.2</td>
<td>97.0 ± 1.9</td>
</tr>
<tr>
<td>Late distal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%(^{45})Ca</td>
<td>95.0 ± 0.2 (n = 11)</td>
<td>95.8 ± 0.2 (n = 7, NS)</td>
<td>95.9 ± 1.2 (n = 5, NS)</td>
<td>95.2 ± 0.5 (n = 5, NS)</td>
<td></td>
</tr>
<tr>
<td>%[^3]Hjinulin</td>
<td>97.5 ± 0.2</td>
<td>100.4 ± 1.6</td>
<td>96.3 ± 1.6</td>
<td>99.8 ± 0.2</td>
<td></td>
</tr>
</tbody>
</table>

Values are means ± SE. Microinjections of \(^{45}\)Ca and \[^3\]Hjinulin into early proximal, late proximal, early distal, and late distal tubules of Wistar rats were performed in control condition (10 rats) and in the presence of Gd\(^{3+}\) (4 rats), La\(^{3+}\) (4 rats), Cd\(^{2+}\) (7 rats), and nifedipine (3 rats). Early proximal data represent the percentage of excreted \(^{45}\)Ca after microinjections in early proximal tubules, which reflect \(^{45}\)Ca reabsorption in all the downstream segments after early proximal (proximal tubule, loop of Henle, distal tubule, and terminal segments). Late proximal data resulting from late proximal microinjections reflect \(^{45}\)Ca reabsorption in all the downstream segments after late proximal (loop of Henle, distal tubule, and terminal segments). Early distal data reflect \(^{45}\)Ca reabsorption along distal and terminal segments, and late distal data reflect \(^{45}\)Ca reabsorption along terminal segments. \[^3\]Hjinulin and \(^{45}\)Ca urine recoveries are expressed as the percentage of the injected amounts. The nos. (n) of microinjections and the P values are in parentheses. P values refer to the difference in the \(^{45}\)Ca urine recoveries between control and experimental group, NS, not significant (Student’s t-test).

Table 2. Unidirectional \(^{45}\)Ca fluxes along the nephron

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>+Cadmium</th>
<th>+Gadolinium</th>
<th>+Lanthanum</th>
<th>+Nifedipine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximal convoluted tubule</td>
<td>3.3%</td>
<td>3.6%</td>
<td>3.5%</td>
<td>2.3%</td>
<td>2.6%</td>
</tr>
<tr>
<td>Loop of Henle Distal convoluted tubule</td>
<td>66.1%</td>
<td>71.8%</td>
<td>81.4%</td>
<td>73.5%</td>
<td>61.9%</td>
</tr>
<tr>
<td>Terminal segment (CNT, CCT)</td>
<td>22.2%</td>
<td>6.3%</td>
<td>4.1%</td>
<td>11.6%</td>
<td>23.8%</td>
</tr>
<tr>
<td>Terminal segment (CNT, CCT)</td>
<td>5.0%</td>
<td>4.2%</td>
<td>4.1%</td>
<td>4.1%</td>
<td>4.8%</td>
</tr>
</tbody>
</table>

For each group, the difference between \(^{45}\)Ca recovery after late proximal and early proximal injections (indicated in Table 1) gives the \(^{45}\)Ca reabsorption in proximal convoluted tubule (PCT). CNT, connecting tubule; CCT, cortical convoluted tubule. \(^{45}\)Ca reabsorption in the loop is obtained by difference between \(^{45}\)Ca recovery after early distal and late proximal injections. Results are expressed as percentage of delivered load.

DISCUSSION

Fig. 4. Inhibitory effect of Cd (20 µM), Cd\(^{2+}\) (100 µM), La\(^{3+}\) (1 mM), and nifedipine (20 µM) on \(^{45}\)Ca reabsorption in terminal part of the nephron. Percentages of inhibition were calculated from \(^{45}\)Ca microinjection in early distal tubule. The nos. of microinjections are above each bar.
the proximal tubule (30), this is the first study to show that acute injection of Cd\(^{2+}\) can produce a Fanconi-like pattern of ion excretion. In the TAL segment of the LH, Cd\(^{2+}\) could reduce reabsorption by blocking ROMK channels (22). An effect on K\(^+\) recycling in the apical membrane might account for reduced Na\(^+\) and K\(^+\) reabsorption, as well a decrease in paracellular transport of divalent cations. A dysfunction of the terminal segments of the nephron could also be involved in Cd\(^{2+}\)-induced salt wasting. In the DT, Ca\(^{2+}\) transport occurs via a transcellular pathway (3). Recently, many experiments have confirmed the involvement of the ECaC ion channel in Ca\(^{2+}\) reabsorption in the DT. In heterologous expression systems, ECaC generates Ca\(^{2+}\) currents inhibited by several divalent cations with a blocking order of Gd\(^{3+} > > \) Cd\(^{2+} > \) La\(^{3+}\) and also slightly by L-type voltage-dependent Ca\(^{2+}\) channel antagonists/agonists (25, 32). In the present study, the unidirectional flux of \(^{45}\)Ca estimated by microinjection in the DT shared the known pharmacological properties of ECaC. This suggests that ECaC might be the main transporter involved in distal reabsorption of Ca\(^{2+}\) and highlights a functional role for ECaC in the kidney. Another important finding was the nature of the distal Ca\(^{2+}\) transport inhibition induced by Cd\(^{2+}\). Under diuretic conditions, the Ca\(^{2+}\) concentration at the beginning of the DT ranged between 0.5 and 1 mM. The fact that only 20 \(\mu\)M Cd\(^{2+}\) was sufficient to inhibit >60% of Ca\(^{2+}\) reabsorption indicates that Cd\(^{2+}\) acted as a channel blocker and did not compete directly with Ca\(^{2+}\) on the transporter. This observation corroborates the hypothesis of Peng et al. (25), who proposed an inhibition of ECaC via a binding of Cd\(^{2+}\) to a high-affinity inhibitory site. Thus inhibition of distal Ca\(^{2+}\) reabsorption by Cd\(^{2+}\) could explain the hypercalcuria elicited by acute intoxication.

In contrast to Ca\(^{2+}\), renal handling of Cd\(^{2+}\) is not well understood. Cd is an environmental pollutant, and its presence in tissues and biological fluids usually results from industrial contamination. The \(^{109}\)Cd microinjections performed in the presence of various Ca\(^{2+}\) concentrations (ranging from 5 \(\mu\)M to 50 mM) indicate that the proximal tubule exhibits the highest reabsorptive capacity for Cd\(^{2+}\). These results were corroborated by micropuncture data demonstrating that filtered Cd\(^{2+}\) is strongly reabsorbed by the early proximal tubule and that very little Cd\(^{2+}\) is delivered to the downstream segments (S3, LH, DT). Therefore, the difference between \(^{109}\)Cd urinary recovery after late and early proximal microinjection did not reflect the \(^{109}\)Cd transport between these two sites. The urinary recovery after early proximal microinjection probably corresponds to a best estimate of proximal transport. Finally, the present results indicated that 95% of Cd\(^{2+}\) was taken up by the

Table 3. \(^{109}\)Cd recovery in urine after microinjection along the nephron

<table>
<thead>
<tr>
<th></th>
<th>Control +Gadolinium (90 (\mu)M)</th>
<th>+Iron (100 (\mu)M)</th>
<th>+Cobalt (100 (\mu)M)</th>
<th>+Bumetanide (50 (\mu)M)</th>
<th>+Zinc (50 (\mu)M)</th>
<th>+Zinc (500 (\mu)M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>%(^{109})Cd</td>
<td>5.1 ± 0.9 (n = 18)</td>
<td>24.1 ± 1.5 (n = 22; (P < 0.001))</td>
<td>36.7 ± 3.6 (n = 9; (P < 0.001))</td>
<td>58.6 ± 2.0 (n = 12; (P < 0.001))</td>
<td>4.4 ± 0.7 (n = 22; NS)</td>
<td>3.1 ± 1.5 (n = 16; NS)</td>
</tr>
<tr>
<td>%[(^{3})H]inulin</td>
<td>96.0 ± 1.2</td>
<td>97.9 ± 0.8</td>
<td>97.6 ± 1.6</td>
<td>99.3 ± 0.2</td>
<td>99.8 ± 0.1</td>
<td>98.9 ± 0.5</td>
</tr>
</tbody>
</table>

Values are means ± SE. Microinjections of \(^{109}\)Cd and [\(^{3}\)H]inulin into early proximal, late proximal, early distal, and late distal tubules of Wistar rats were performed in control condition (7 rats) and in the presence of Gd\(^{3+}\) (10 rats), iron (5 rats), cobalt (4 rats), bumetanide (2 rats), and zinc (6 rats). As in Table 1, tracer amount in the urine reflects reabsorption of the tracer in all the downstream segments of the nephron. [\(^{3}\)H]inulin and \(^{109}\)Cd urine recoveries are expressed as percentage of the injected amounts. The nos. (n) of microinjections and the \(P\) values are in parentheses. \(P\) values refer to the difference in the \(^{109}\)Cd urine recoveries between control and experimental group (Student’s t-test).

Fig. 5. Influence of Cd\(^{2+}\) concentration on urine excretion of \(^{109}\)Cd after microinjection in early (PT) and late proximal (PCT) tubule and late distal tubule (DCT). Cd\(^{2+}\) concentrations were increased from 5 \(\mu\)M to 50 mM. \(^{109}\)Cd excreted amounts are expressed in % of injected amount. The number of microinjections is in parentheses.
proximal tubule. Using a similar microinjection technique, Felley-Bosco and Diezi (8) calculated that 70% of injected inorganic Cd\(^{2+}\) was reabsorbed in the proximal tubule. Taken together, these data underline the important role of the proximal tubule in free Cd\(^{2+}\) reabsorption.

If we accept that Cd\(^{2+}\) is almost completely reabsorbed along the proximal tubule, the inhibition of Cd\(^{2+}\) transport in downstream segments should not affect the percentage of excreted \(^{109}\text{Cd}\) after proximal injection. This is the case, because the presence of bumetanide (50 \(\mu\)M) or zinc (50 \(\mu\)M) did not change the percentage of Cd\(^{2+}\) recovered in the urine. Finally, although they exhibited permeability to Cd\(^{2+}\), the segments beyond the proximal tubule did not significantly participate in Cd\(^{2+}\) transport at least at low Cd\(^{2+}\) concentrations. It is different at high Cd\(^{2+}\) concentrations and in the presence of factors that decrease proximal reabsorption of Cd\(^{2+}\). The studies performed with Fe\(^{2+}\) (100 \(\mu\)M), Co\(^{2+}\) (100 \(\mu\)M), and Zn\(^{2+}\) (500 \(\mu\)M) revealed an inhibitory effect of these metals in the proximal tubule. Consequently, a significant amount of Cd\(^{2+}\) is delivered to the S3 segment, the LH, and terminal parts of the nephron, and the contribution of these segments to Cd\(^{2+}\) reabsorption then becomes significant.

The observation that Fe\(^{2+}\) and Co\(^{2+}\) clearly decrease Cd\(^{2+}\) transport in all segments suggests that the divalent metal cation transporter DMT1 is involved in the trancellular pathway. DMT1 can transport Fe\(^{2+}\), Zn\(^{2+}\), Mn\(^{2+}\), Co\(^{2+}\), Cd\(^{2+}\), Cu\(^{2+}\), Ni\(^{2+}\), and Pb\(^{2+}\) (17) and has been localized to the proximal S3 segment, the LH, the DCT, and collecting ducts (10). In the proximal tubule, DMT1 is probably present in the endosomal compartment (10), whereas in downstream nephron segments it is located in the apical plasma membrane. Interestingly, Fe\(^{2+}\) and Co\(^{2+}\), and a high concentration of Zn\(^{2+}\), decreased proximal Cd\(^{2+}\) reabsorption, indicating that DMT1 might be involved in its transport. This result is different from the finding of Ferguson et al. (10) that DMT1 was not involved in the translocation of Fe\(^{2+}\) across the brush-border membrane of the proximal tubule. Actually, the transport systems involved in proximal reabsorption of Cd\(^{2+}\) remain unclear. However, the transporters belonging to the zinc-related transport-like protein (ZIP) family are possible candidates. Mouse ZIP1 is expressed in kidney tissue and located in the plasma membrane (6). Several other metals, such as Cd\(^{2+}\), Fe\(^{2+}\), Cu\(^{2+}\), or Zn\(^{2+}\), inhibit Zn\(^{2+}\) uptake by this protein (6). It is tempting to speculate that a ZIP transporter might be involved in the transport of Zn\(^{2+}\) and Cd\(^{2+}\) along the proximal tubule. The blocking effect of Gd\(^{3+}\) indicates that stretch-activated cation channels could be also involved in Cd\(^{2+}\) uptake in the proximal tubule. However, the absence of the effect of Gd\(^{3+}\) on proximal 45Ca transport suggests that stretch-activated cation channels play only a minor role in both Ca\(^{2+}\) and Cd\(^{2+}\) transport.

The present study demonstrated that Fe\(^{2+}\) and Co\(^{2+}\) decreased Cd\(^{2+}\) transport in segments downstream to the proximal tubule. Using microperfusion of \(^{55}\text{Fe}\), Wareing et al. (34) demonstrated significant reabsorption of Fe\(^{2+}\) in the LH and that this reabsorption could be mediated by DMT1 (10, 34). Thus it is reasonable to conclude that, like with Fe\(^{2+}\), Cd\(^{2+}\) is transported, at least in part, by DMT1 in the apical membrane of the LH, in its TAL segment where DMT1 has been shown to be present (10).

In the LH and terminal nephron segments, \(^{109}\text{Cd}\) microinjections in the presence of bumetanide highlight the role of a different pathway from the tranacellular route for Cd\(^{2+}\) transport. In the TAL, the paracellular pathway plays an important role in divalent cation reabsorption. Bumetanide, by inhibiting Na\(^+-\text{K}^+\)-2Cl\(^-\) cotransport, decreases the transepithelial voltage and diminishes cation paracellular reabsorption (5, 16). The fact that this loop diuretic decreased Cd\(^{2+}\) transport along LH and DT indicates that in these segments Cd\(^{2+}\) transport may also occur via the paracellular pathway.

The inhibitory effect of Gd\(^{3+}\) on \(^{109}\text{Cd}\) and 45Ca uptake suggests that Cd\(^{2+}\) might be reabsorbed through Ca\(^{2+}\) channels. ECaC could be one of these channels, because it participates in distal Ca\(^{2+}\) transport and is blocked by low Ca\(^{2+}\) concentrations.

Using cells derived from distal portions of the nephron, Friedman and Gesek (11) have proposed that Cd\(^{2+}\) transport involves Ca\(^{2+}\) channels and a membrane transport protein that can be inhibited by Fe\(^{3+}\). In light of more recent experiments, it is likely that this membrane transporter is DMT1 (11). Our data also support this conclusion, because distal Ca\(^{2+}\) permeability was strongly blocked by Fe\(^{2+}\), Co\(^{2+}\), and Zn\(^{2+}\).

As far as zinc transport is concerned, the present study shows that Zn\(^{2+}\) is transported along the proximal tubule, the LH, and the terminal segments of the nephron. The finding that a low Zn\(^{2+}\) concentration (50 \(\mu\)M) did not modify Cd\(^{2+}\) transport in the proximal tubule and LH strongly suggests that Zn\(^{2+}\) and Cd\(^{2+}\) do not share the same uptake pathways in these segments. In the proximal tubule, Zn\(^{2+}\) could be transported in the apical membrane as a free ion via a saturable carrier-mediated process and an unsaturable pathway, or complexed with histidine or cysteine via a sodium-amino acid cotransport mechanism (12); however, the interaction of Cd\(^{2+}\) with such processes is unclear. In the LH, the lack of competition between Zn and Cd is perhaps surprising, because DMT1 has a strong affinity for Zn\(^{2+}\) (17) and may be one of the Cd\(^{2+}\) transporters in this segment. However, studies of Fe\(^{2+}\) transport by DMT1 in this segment by Wareing et al. (34) have

Table 4. \(^{65}\text{Zn}\) recovery in urine after microinjection along the nephron

<table>
<thead>
<tr>
<th>Segment</th>
<th>Control</th>
<th>Cadmium (50 (\mu)M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early proximal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{65}\text{Zn})</td>
<td>14.3 ± 4.3 (n = 7)</td>
<td>24.1 ± 2.8 (n = 7)</td>
</tr>
<tr>
<td>[^{3}H]inulin</td>
<td>98.4 ± 10.6</td>
<td>97.4 ± 4.5</td>
</tr>
<tr>
<td>Medium proximal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{65}\text{Zn})</td>
<td>30.1 ± 2.9 (n = 7)</td>
<td>40.3 ± 2.4 (n = 4)</td>
</tr>
<tr>
<td>[^{3}H]inulin</td>
<td>97.9 ± 8.2</td>
<td>99.8 ± 5.7</td>
</tr>
<tr>
<td>Late proximal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{65}\text{Zn})</td>
<td>40.9 ± 3.6 (n = 8)</td>
<td>48.4 ± 4.1 (n = 4)</td>
</tr>
<tr>
<td>[^{3}H]inulin</td>
<td>97.2 ± 5.8</td>
<td>99.5 ± 4.1</td>
</tr>
<tr>
<td>Early distal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{65}\text{Zn})</td>
<td>84.7 ± 2.9 (n = 8)</td>
<td>99.3 ± 0.9 (n = 4)</td>
</tr>
<tr>
<td>[^{3}H]inulin</td>
<td>98.4 ± 5.3</td>
<td>99.6 ± 6.0</td>
</tr>
</tbody>
</table>

Values are means ± SE. Microinjections of \(^{65}\text{Zn}\) and \[^{3}H\]inulin into early proximal, medium proximal, late proximal and early distal tubules of Wistar rats (8 rats) and in the presence of Cd\(^{2+}\) (5 rats) were performed. As in Tables 1 and 3, tracer amount in the urine reflects reabsorption of the tracer in all the downstream segments of the nephron. \[^{3}H\]inulin and \(^{65}\text{Zn}\) urine recoveries are expressed as the percentage of the injected amounts. The nos. (n) of microinjections are in parentheses.

www.ajprenal.org
shown a lack of competition between Zn$^{2+}$ and Fe$^{2+}$. According to these authors, it is possible that in the LH, DMT1 does not transport Zn$^{2+}$, or transports it with only low efficiency. This possibility is consistent with our data, because a high Zn$^{2+}$ concentration (500 μM) only produced a modest decrease in Cd$^{2+}$ absorption along the LH.

Along the terminal nephron segments, Zn$^{2+}$ inhibited Cd$^{2+}$ transport and vice versa, suggesting that DMT1 may play an important role in Zn$^{2+}$ reabsorption in this part of the nephron. Interestingly, four DMT1 isoforms have been identified in renal tissue (19). Thus the difference between the effects of Zn$^{2+}$ action on Cd$^{2+}$ uptake in the LH and more distal segments could be due to the pattern of expression of these different isoforms (33).

The results obtained in the present study suggest several ways in which Cd$^{2+}$ might be eliminated: 1) in the proximal tubule by blocking paracellular and transcellular pathways (unknown for the moment); 2) in the LH by use of loop diuretics (such as bumetanide and furosemide) and DMT1 inhibition; and 3) in the distal tubule by DMT1 inhibition. Our findings on Cd$^{2+}$ transport highlight the need to characterize the properties in vivo of these different transport pathways and to develop pharmacological tools with which to manipulate DMT1 function.

ACKNOWLEDGMENTS

We are grateful to Dr. Robert Unwin for constructive criticism of this manuscript, corrections and for helpful discussions.

REFERENCES