Role of heme oxygenase-1 in endotoxemic acute renal failure

Brian Poole,1 Wei Wang,1 Yung-Chang Chen,1,2 Einath Zolty,1 Sandor Falk,1 Amitabha Mitra,1 and Robert Schrier†
1Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado; and 2Division of Critical Care Nephrology, Chang Guang Memorial Hospital, Taipei, Taiwan

Submitted 9 November 2004; accepted in final form 15 May 2005

Poole, Brian, Wei Wang, Yung-Chang Chen, Einath Zolty, Sandor Falk, Amitabha Mitra, and Robert Schrier. Role of heme oxygenase-1 in endotoxic acute renal failure. Am J Physiol Renal Physiol 289: F1382–F1385, 2005.—The pathogenesis of septic acute renal failure (ARF) involves systemic vasodilation with compensatory upregulation of vasoconstrictors. This can lead to renal vasoconstriction and ARF. Heme oxygenase (HO) is the rate-limiting step in heme metabolism and produces carbon monoxide (CO) and biliverdin. HO-1 is an inducible form of the enzyme and is expressed in response to cell injury. It was hypothesized in endotoxemia, induction of HO-1 would lead to increased production of the vasodilator CO, lower blood pressure, and decrease renal function. The role of HO-1 was therefore examined in a mouse model of endotoxemia. One group of mice received LPS alone and were compared with mice that received LPS in addition to an inhibitor of HO-1, zinc protoporphyrin (ZnP). Treatment of mice with LPS resulted in significant increases in the protein expression of HO-1 compared with controls treated with vehicle. Immunohistochemical analysis localized this upregulation to both the proximal and distal tubules as well as the vasculature. Hemodynamic studies were performed during endotoxemia and the mean arterial pressure (MAP) was found to be significantly higher in the HO-1 inhibitor-treated compared with vehicle-treated mice (78 ± 3 vs. 64 ± 2 mmHg, P < 0.01). It was found that the inhibitor group had higher renal blood flows (RBF) also during endotoxemia (111.5 ± 9.5 vs. 66.0 ± 3.5 μl/min, P < 0.05). In summary, during endotoxemia ARF, inhibiting HO-1 with ZnPP resulted in decreased renal vasoconstriction and a higher GFR.

Heme oxygenase (HO) is the rate-limiting step in the metabolism of heme-containing proteins (13, 24, 25). There are two isoforms of HO with HO-1 being the inducible form that is upregulated by varied stimuli including lipopolysaccharide and nitric oxide (NO) (4, 5, 9, 11, 20, 23, 29). HO-2 is constitutively expressed and involved in heme metabolism. The action of HO leads to the production of biliverdin, a known potent antioxidant and carbon monoxide (CO) (23). Production of CO is known to induce vasodilation via its binding soluble guanylate cyclase that results in production of cGMP (16). Furthermore, CO has been shown to decrease the production of vasoconstrictors such as endothelin-1 as well as decrease sensitivity to vasoconstrictors (15). Metalloporphy-
was started 1 h before experimentation. FITC-inulin (0.75%) was frozen at cated and spun at low speed to clear debris, and the supernatant was methylsulfonyl fluoride. After homogenization, samples were sonicated and spun at low speed to clear debris, and the supernatant was added to the infusion solution for the determination of glomerular filtration rate (GFR) as described by Lorenz and Gruenstein (12). A bladder catheter (PE-10) was used to collect urine. Two 30-min collections of urine were obtained under oil and weighed for volume determination. Blood for plasma inulin determination was drawn between urine collections. FITC in plasma and urine samples was measured using a CytoFluor plate reader (Perseptive Biosystems, Foster City, CA).

RESULTS

Renal iNOS and HO-1 during endotoxemia. To assess the expression of HO-1 in the kidney during endotoxemia, C57BL/6 mice received intraperitoneal injections of LPS (2.5 mg/kg). At 16 h, the expression of HO-1 as well as iNOS was found to be significantly greater in the kidneys of endotoxemic mice compared with control animals treated with vehicle (Fig. 1). The administration of the HO-1 inhibitor, ZnPP, had no effect on iNOS but upregulated HO-1 protein expression.

Immunohistochemical detection of HO-1. Tissue samples were harvested 16 h after LPS treatment. Tissues were fixed in 4% formaldehyde solution and paraffin embedded. They were then stained using the avidin-biotinylated peroxidase method. A rabbit HO-1 antibody (StressGen Biotechnologies) was used as the primary antibody and protein bands were detected using ECL method.

Measurement of renal blood flow, glomerular filtration rate, and mean arterial pressure. The animals were anesthetized with pentobarbital sodium (60 mg/kg) and placed on a thermostatically controlled surgical table. A tracheotomy was performed, and an endotracheal tube was inserted. Catheters (custom pulled from PE-250) were placed in the jugular vein for maintenance infusion and the carotid artery for blood pressure determinations. The kidney was exposed by a left subcostal incision and was dissected free from perirenal tissue, and renal arteries were isolated for the determination of renal blood flow (RBF) using a blood flowmeter and probe (0.5v; Transonic Systems, Ithaca, NY). Mean arterial pressure (MAP) was measured using a blood pressure transducer connected to a Transpac IV transducer and monitored continuously using Windda Waveform recording software (Dataq Instruments). An intravenous maintenance infusion of 2.25% BSA in normal saline (NS) at a rate of 0.25 μl·g body wt⁻¹·min⁻¹ was started 1 h before experimentation. FITC-inulin (0.75%) was

Effect of inhibition of HO-1 on systemic and renal hemodynamics. To determine the role of HO-1 in endotoxemic ARF, immunohistochemical studies were undertaken to localize the upregulation of HO-1 anatomically as well as determine the effect of treatment with the inhibitor of HO-1, ZnPP. It was found that during endotoxemia, HO-1 is upregulated throughout both proximal and distal tubules in the cortex as well as the medulla. However, there was inadequate renal vasculature in the samples to make any definitive statement about HO-1 protein expression in the renal vasculature. As with the HO-1 protein expression (Fig. 1), the immunohistochemical studies demonstrated an upregulation of HO-1 with ZnPP treatment (Fig. 2).

Renal HO-1 (A) and iNOS (B) protein expression during endotoxemia. Western blot was used to examine HO-1 and iNOS protein expressions in the kidney in the control and endotoxemic mice with or without ZnPP. Kidneys were harvested at 16 h after LPS (2.5 mg/kg) administration. Rabbit polyclonal antibodies were used as the primary antibody and protein bands were detected using ECL method.

Renal iNOS and HO-1 during endotoxemia. To assess the expression of HO-1 in the kidney during endotoxemia, C57BL/6 mice received intraperitoneal injections of LPS (2.5 mg/kg). At 16 h, the expression of HO-1 as well as iNOS was found to be significantly greater in the kidneys of endotoxemic mice compared with control animals treated with vehicle (Fig. 1). The administration of the HO-1 inhibitor, ZnPP, had no effect on iNOS but upregulated HO-1 protein expression.

Immunohistochemical detection of HO-1. Tissue samples were fixed in 4% formaldehyde solution for 24 h, dehydrated, embedded in paraffin, and cut into 3-μm-thick slices. Immunohistochemical staining was performed using the avidin-biotinylated peroxidase method. After deparaffinization and rehydration, sections were pretreated with 0.3% hydrogen peroxidase in 70% methanol to exhaust endogenous peroxidase activities. Sections were preincubated with 10% horse serum, then incubated with the rabbit HO-1 antibody at a 1:200 dilution at 37°C for 1 h. Slides were washed and incubated with biotinylated secondary antibody, goat anti-rabbit immunoglobulin G, at a 1:400 dilution in phosphate-buffered saline. After treatment of the slides with an Elite ABC kit (Vector Laboratories, Burlingame, CA), antigens were visualized with the Sigma fast 3,3-diaminobenzidine tablet system and applied on the slides for 5 min. Counterstaining was performed with hematoxylin.

Measurement of renal blood flow, glomerular filtration rate, and mean arterial pressure. The animals were anesthetized with pentobarbital sodium (60 mg/kg) and placed on a thermostatically controlled surgical table. A tracheotomy was performed, and an endotracheal tube was inserted. Catheters (custom pulled from PE-250) were placed in the jugular vein for maintenance infusion and the carotid artery for blood pressure determinations. The kidney was exposed by a left subcostal incision and was dissected free from perirenal tissue, and renal arteries were isolated for the determination of renal blood flow (RBF) using a blood flowmeter and probe (0.5v; Transonic Systems, Ithaca, NY). Mean arterial pressure (MAP) was measured using a blood pressure transducer connected to a Transpac IV transducer and monitored continuously using Windda Waveform recording software (Dataq Instruments). An intravenous maintenance infusion of 2.25% BSA in normal saline (NS) at a rate of 0.25 μl·g body wt⁻¹·min⁻¹ was started 1 h before experimentation. FITC-inulin (0.75%) was

Effect of inhibition of HO-1 on systemic and renal hemodynamics. To determine the role of HO-1 in endotoxemic ARF, a metalloporphyrin inhibitor of HO-1 was employed. ZnPP (25 mg/kg) was injected intraperitoneally 30 min before the administration of LPS. This dose of metalloporphyrin was chosen because it has been found to have minimal effects on the activity of nitric oxide synthase (NOS) (17, 30). At 16 h of endotoxemia it was found that the MAP was significantly elevated in the mice treated with ZnPP (78 ± 3 vs. 64 ± 2 mmHg, P < 0.01; Fig. 3A). Furthermore, the ZnPP-treated group exhibited a significant increase in RBF compared with
vehicle-treated, endotoxemic mice (1.83 ± 0.21 vs. 0.68 ± 0.08 ml/min, \(P < 0.01 \); Fig. 3B). In keeping with these results, when the RVR was calculated, there was a significant decrease in the ZnPP-treated group (43.5 ± 3.4 vs. 95.9 ± 11.3 mmHg·ml⁻¹·min⁻¹, \(P < 0.01 \); Fig. 3C). The plasma renin activities were significantly lower in the hemeoxygenase inhibitor group (22.7 ± 1.9 vs. 32.5 ± 3.0 ng·ml⁻¹·min⁻¹, \(P < 0.05 \)) and thus could have contributed to the renal vasodilation. A functional significance of these renal hemodynamic differences was supported by comparing the GFR of the two groups. In the ZnPP-treated group, the GFR was elevated at 111.7 ± 19.5 µl/min compared with the control group with a GFR of 66.2 ± 3.5 µl/min (\(P < 0.05 \); Fig. 3D).

DISCUSSION

The pathogenesis of experimental ARF secondary to endotoxemia involves impaired hemodynamics with compensatory upregulation of vasoconstrictor systems and renal vasoconstriction. However, the ARF also has been shown to be mediated by oxidant injury and can be ameliorated by a superoxide mimetic (28). Thus both hemodynamic and prooxidant injury of the kidney appear to be involved in experimental ARF secondary to endotoxemia. In this regard, HO-1 could affect both of these aspects of endotoxemia-related renal injury. HO-1 has been shown in toxic (1, 22) and ischemic (14, 21) models of ARF to have cytoprotective effects by the degradative action of the toxic, prooxidant heme moiety as well as the production of the antioxidant bilirubin (23). Conversely, the induction of HO-1 results in the production of CO which has vasodilatory properties. CO binds to and activates the enzyme sGC resulting in cyclic GMP generation and vasodilation. The hemodynamic effects of CO however are complicated, as high levels of CO may bind to NOS and inhibit the production of NO. CO may also decrease the vascular reactivity to vasoconstrictors. On the other hand, lower concentrations of CO may induce release of NO from intracellular stores and thus mimic the vascular effects of NO (26). In either case, the results indicate that inhibiting HO-1 with ZnPP would be expected to decrease CO and its associated vasodilatory effect. This interpretation is supported by the increase in MAP, and thus renal perfusion pressure, with the associated rise in RBF and GFR during ZnPP administration. We can, however, not exclude a direct effect of CO on RBF.

The present study was undertaken to define whether the inhibition of HO-1 may be involved in endotoxemia-related ARF by providing cytoprotection or worsening the injury by effects on systemic hemodynamics. In previous studies, HO-1 knockout mice were more predisposed to organ injury with LPS than with the use of HO-1 inhibitor in wild-type mice (19). In the present study, the beneficial hemodynamic effects of HO-1 inhibitor predominated over the cellular protective effect of HO-1 during endotoxemia in wild-type mice. Results with inhibition of HO-1 indicated that induction of the HO-1 enzyme during endotoxemia led to a series of hemodynamic changes that culminated in the deterioration of renal function. Specifically, endotoxemic mice treated with a metalloporphyrin inhibitor of HO-1 exhibited significantly higher MAP as well as higher levels of RBF and decreased RVR. These hemodynamics were associated with improved renal function as assessed by GFR. Therefore, in this mouse model of endotoxemic ARF, the deleterious effects of further hemodynamic compromise by HO-1 were more important than any cytoprotective effects HO-1 may confer. The capacity of this HO-1 inhibitor has also been shown to reverse the hemodynamic perturbations associated with experimental cirrhosis (6).

In addition, the immunohistochemical studies have localized the upregulation of HO-1 throughout the cortex and medulla in both proximal and distal tubules as well as the vasculature. Despite the significant upregulation of HO-1 in the tubules, any cytoprotection was masked by the increase in renal vasoconstriction. In the HO-1 inhibitor-treated group, there was also an increase in the level of HO-1 protein expression that may be
related both to decreased renal injury associated with improved renal and systemic hemodynamics and a further upregulation of HO-1.

In conclusion, in experimental endotoxic ARF, inhibiting HO-1 with the metalloporphyrin ZnPP resulted in protection of renal function. Protection was associated with significantly improved systemic hemodynamics, less renal vasoconstriction, and a higher GFR.

GRANTS

This work was supported by National Institutes of Health Grants DK-52599 and P01-HL-31992.

REFERENCES