The role played by endocytosis in albumin-induced secretion of TGF-β₁ by proximal tubular epithelial cells

Ramaswamy Diwakar,¹ Alex L. Pearson,¹
Paul Colville-Nash,¹ Nigel J. Brunskill,² and Mark E. C. Dockrell¹

¹South West Thames Institute for Renal Research, St. Helier Hospital, Carshalton, Surrey, United Kingdom,
²Department of Nephrology, Leicester General Hospital, Leicester, United Kingdom

Submitted 24 February 2006; accepted in final form 27 December 2006

Diwakar R, Pearson AL, Colville-Nash P, Brunskill NJ, Dockrell ME. The role played by endocytosis in albumin-induced secretion of TGF-β₁ by proximal tubular epithelial cells. Am J Physiol Renal Physiol 292: F1464–F1470, 2007. First published January 16, 2007; doi:10.1152/ajprenal.00069.2006.—Proteinuria predicts the decline of renal function in chronic kidney disease. Reducing albuminuria has been shown to be associated with a reduction in this rate of decline. Proximal tubular epithelial cells (PTECs), when exposed to albumin produce matrix proteins, proinflammatory and profibrotic cytokines like TGF-β₁. Some of these effects are dependent on endocytosis of albumin by PTECs. However, conditions like diabetic nephropathy, believed to be associated with reduced albumin endocytosis, are associated with interstitial fibrosis. Moreover, megalin, the putative albumin binding receptor in PTECs, has potential signaling motifs in its cytoplasmic domain, suggesting its ability to signal in response to ligand binding from the apical surface of PTECs. Hence, we looked to see whether albumin-induced secretion of TGF-β₁ by PTECs is dependent on albumin endocytosis or whether it could occur in the absence of albumin endocytosis. We studied the production of TGF-β₁ in two accepted models of PTECs, opossum kidney cells and human kidney cell clone-8 cells, with widely varying degrees of endocytosis. We then studied the effect of inhibiting albumin endocytosis with various inhibitors on albumin-induced TGF-β₁ secretion. Our results indicate that albumin-induced TGF-β₁ secretion by PTECs does not require albumin endocytosis and therefore the mechanism for the induction of some profibrotic responses by albumin may differ from those required for some of the inflammatory responses. Moreover, we found that albumin-induced TGF-β₁ secretion by PTECs is not dependent on its interaction with megalin; receptor-associated protein; simvastatin; albuminuria

END-STAGE RENAL DISEASE is an important cause of mortality and morbidity, and the rate of progression of chronic kidney disease to end-stage renal disease correlates best with the degree of interstitial fibrosis (24). The degree of proteinuria predicts the rate of decline of renal function in the setting of a variety of renal diseases (1, 5, 12, 13, 16–17, 22, 30, 43). This suggests the possibility of a causal link between proteinuria and interstitial fibrosis. Albumin is the predominant protein in proteinuric urine, and reduction of albuminuria has been shown to correlate with a reduction in the rate of decline of glomerular filtration rate in renal disease (29).

In keeping with this, albumin has been shown in proximal tubular epithelial cells (PTECs) to induce the production of a variety of proinflammatory cytokines such as RANTES (49) and monocyte chemoattractant protein-1 (MCP-1) (35, 41, 42), extracellular matrix (ECM) proteins such as fibronectin (34) and collagen (44), and profibrotic cytokines such as transforming growth factor-β (TGF-β) (46). TGF-β is a prominent factor in the process of interstitial fibrosis. It modulates the expression of ECM in several cell culture models and is considered a determinant of ECM accumulation in tubulointerstitial fibrosis. The clear relationship between proteinuria and TGF-β has also been shown in biopsy studies (10). Moreover, Johnson et al. (18) have shown that the TGF-β secreted by PTECs is of functional importance because it can act on cortical fibroblasts in a paracrine fashion and cause their increased proliferation, thereby contributing to interstitial fibrosis. Hence, blocking albumin-induced production of TGF-β by PTECs may lead to reduced renal damage and potentially retard the progression of renal failure.

Some of the above-mentioned responses of PTECs to albumin are known to be dependent on albumin endocytosis, e.g., MCP-1 (41) and collagens I, III, and IV (44). However, it is unclear whether this is the case with TGF-β production. This knowledge would be helpful in devising ways of preventing albumin-induced TGF-β production and thus prevent subsequent interstitial fibrosis.

Albumin filters through the glomerulus into the tubular lumen and binds to receptors in the luminal surface of PTECs called megalin and cubulin (2, 3, 48). It is then internalized and bound to these receptors. Megalin is a transmembrane receptor, the cytoplasmic domain of which has many potential signaling motifs. Hence, it is possible that some of the effects of albumin on PTECs are via activation of signaling pathways from the luminal surface of PTECs and are either partially or completely independent of its endocytosis. Hence, we undertook the following series of experiments to study the role of albumin endocytosis in the secretion of TGF-β₁ by PTECs in response to albumin exposure.

MATERIALS AND METHODS

All chemicals were purchased from Sigma (Sigma-Aldrich, Poole, Dorset, UK) unless otherwise stated.

Cell culture. OK cells, an immortalized PTEC cell line derived from the American opossum (Didelphys virginiana) (20) were grown in DMEM nutrient mixture F-12 HAM (1:1) supplemented with 10% heat inactivated FCS with 100 U/ml penicillin, 100 μg/ml streptomycin, and 2 mM l-glutamine.

Human kidney cell clone 8 (HKC-8) cells were kindly provided by Dr. Lorraine Racusen of Johns Hopkins University (Baltimore, MD). These cells were grown in DMEM-F-12 (1:1) (Invitrogen, GIBCO,

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
ROLE OF ENDOCYTOSIS IN ALBUMIN INDUCED TGF-β1 SECRETION

Human serum albumin (HSA)-induced TGF-β1 secretion

Fig. 1. Human serum albumin (HSA)-induced TGF-β1 production in OK (A) and HKC-8 (B) cells. Confluent quiescent cells were incubated with indicated concentrations of HSA for 8 h. Results are means of 3 experiments (SD). *P < 0.05; **P < 0.01.
tified was in the range of 32–1,000 pg/ml. The amount of secreted TGF-β1 was corrected for total cellular protein.

Statistics. The results are presented as means (SD). Statistical analysis was performed with ANOVA with post-hoc analysis using Tukey’s test.

RESULTS

Albumin induces TGF-β1 production in PTECs (OK cells and HKC-8 cells). HSA induced a concentration-dependent secretion of TGF-β1 at 8 h in OK cells (Fig. 1A). The response plateaued at 1 mg/ml. This effect of albumin was not mimicked by equimolar mannitol, thereby excluding an osmotic effect of albumin as the cause of the TGF-β1 secretion (data not shown). HKC-8 cells showed comparable TGF-β1 secretion at 8 h as OK cells (Fig. 1B).

The results of these experiments were consistent with responses seen previously with primary PTECs (46).

Comparison of albumin endocytosis in OK cells vs. HKC-8 cells. Given the comparable secretion of TGF-β1 by both of the cell types, we studied the endocytosis of albumin by these cells to see whether this was also comparable.

In keeping with existing literature, OK cells demonstrated a time-dependent (Fig. 2) and concentration-dependent (Fig. 3) endocytosis of albumin. The data demonstrate saturation kinetics in keeping with receptor-mediated endocytosis (31). HKC-8 cells showed very little endocytosis of RRX-albumin (Figs. 2 and 3): ~2% compared with OK cells at 0.1 mg/ml concentration (Fig. 3).

The results of these experiments suggested that endocytosis did not play a vital part in the secretion of TGF-β1 by PTECs in response to albumin exposure.

To eliminate the possibility of variable sensitivity of the TGF-β1 ELISA kit to TGF-β1 from various species, we attempted to study the effect of inhibiting albumin endocytosis in PTECs from a single species (the OK cells) on albumin-induced TGF-β1 secretion.

To investigate inhibition of endocytosis on TGF-β1 secretion, the OK cell model was used in the presence and absence of two inhibitors of endocytosis with different mechanisms of action.

Inhibition of albumin endocytosis in OK cells. EIPA, a sodium/hydrogen exchanger-3 inhibitor (225 μM) inhibited...
RRX-albumin endocytosis at 30 min by 70% (Fig. 4). This is comparable to work done previously by others (7). Simvastatin (10 μM), a 3-hydroxy-3-methylglutaryl CoA reductase inhibitor, reduced albumin endocytosis by 45% (Fig. 5), as has been shown previously (32, 39).

Inhibiting albumin endocytosis does not reduce albumin-induced TGF-β₁ production. Effective concentrations of inhibitors of endocytosis were chosen from the above experiments and utilized in experiments performed to study TGF-β₁ secretion. As seen in Figs. 6 and 7, albumin caused a concentration-dependent secretion of TGF-β₁. EIPA on its own did not have any effect on the secretion of TGF-β₁ and did not reduce albumin-induced TGF-β₁ secretion (Fig. 6). There was a trend toward increased TGF-β₁ production by albumin in the presence of EIPA, and this reached statistical significance at 1 mg/ml albumin. Similarly, simvastatin did not reduce albumin-induced TGF-β₁ secretion (Fig. 7). There was no cytotoxicity (assessed by LDH release) associated with the inhibitors of endocytosis at the concentrations used (data not shown).

Role played by megalin in albumin-induced TGF-β₁ production. Megalin, a large transmembrane receptor at the surface of PTECs, has been shown to bind albumin and is thought to be involved in albumin endocytosis. The cytoplasmic tail of megalin has potential signaling sequences, which raise the interesting possibility that megalin may initiate signaling cascades in response to binding of ligands to its extracellular domain. To study the role played by megalin in albumin-induced TGF-β₁ secretion, we chose to use RAP, a known inhibitor of binding of albumin to megalin (3, 48).

RAP tended to inhibit RRX-albumin endocytosis in a dose-dependent fashion, with ~45% inhibition at 0.08 μM. A significant inhibition of 63% was achieved by 0.25 μM RAP (Fig. 8). However, RAP did not have any effect on TGF-β₁ secretion on its own, nor did it affect albumin-induced TGF-β₁ secretion (Fig. 9). This suggests that megalin was not involved in albumin-induced TGF-β₁ secretion.

Role played by TGF-β receptor in albumin-induced TGF-β₁ secretion. In light of the above results suggesting that megalin is not involved in albumin-induced TGF-β₁ secretion, we investigated an alternative receptor-mediated pathway. It is known that TGF-β can induce its own production by acting through TGF-β II receptor (23). Moreover, in vascular endothelial cells, albumin is known to bind to and induce TGF-β receptor II signaling (33). Hence, we studied that role of TGF-β receptor transactivation in the secretion of TGF-β₁ on albumin exposure in PTECs. SB-431542 (an activin receptor-like kinase 4, 5, and 7 inhibitor; Ref. 14) has been shown to inhibit a variety of effects of TGF-β₁ (11, 21).

SB-431542 at 10 μM concentration did not have any effect on albumin-induced TGF-β₁ secretion (Fig. 10). This result was duplicated in HKC-8 cells, where 10 μM SB-431542 was...
We have demonstrated that endocytosis of HSA is not a requirement for albumin-induced TGF-β1 secretion by two distinct approaches. We have compared TGF-β1 secretion in two cell lines with very different degrees of endocytosis. TGF-β1 production was comparable in both of these cell lines. To confirm this finding, we inhibited albumin endocytosis with two different inhibitors, EIPA (6, 7), which acts by preventing the recycling of receptors back to the apical surface, and simvastatin (32, 39), which inhibits the prenylation of GTP-bound proteins, in a cell model that shows good albumin endocytosis (OK cells) (31). The results confirmed that receptor internalization is not required for the secretion of TGF-β1. This is in agreement with the data of Zafiriou et al. (47), which suggests that, despite pioglitazone’s effect of increasing albuminuria, TGF-β1 production was not enhanced.

Our data thus provide an explanation as to how albumin may contribute to kidney damage in conditions like diabetes, where albuminuria is accompanied and to a certain extent contributed to by reduced tubular albumin endocytosis (36–38). In this setting, the production of classical inflammatory cytokines like MCP-1 by PTECs, an endocytosis-dependent phenomenon (41), would not be enhanced. We, however, see progressive renal fibrosis and decline in renal function, which is reversed on reducing albuminuria (29).

The lack of inhibition of albumin-induced TGF-β1 secretion in the presence of inhibitors of albumin endocytosis EIPA and simvastatin suggests that the signaling pathways involved in this process are operative from the surface of PTECs.

Regarding simvastatin, our data show interesting differences from those of Kim et al. (19), who found that lovastatin reduced TGF-β1 mRNA synthesis and protein secretion in cultured rat mesangial cells in response to glucose. However, studies in cultured heart cells have previously shown that statins upregulate TGF-β1 mRNA production, TGF-β receptor II expression, and TGF-β signaling (25). Hence, it is possible that the effect of statins on TGF-β1 production is either cell type specific or is dependent on the agonist.

We studied the role of megalin in albumin-induced TGF-β1 production. RAP binds to megalin with high affinity and prevents albumin binding and hence endocytosis of albumin (3, 48). The data again showed that endocytosis is not a requirement for albumin-induced secretion of TGF-β1. Interestingly, the data also suggest that albumin-induced secretion of TGF-β1 is not via megalin signaling. The concentration of RAP used in our experiments caused a significant increase in LDH release at 8 h compared with that shown in control. However, this amounted to only 3% of positive control. Moreover, RAP did not affect basal TGF-β1 secretion, indicating that this degree of cytotoxicity does not result in measurable TGF-β1 release. Consequently, we do not believe that cell death-induced TGF-β1 release masked an inhibition of the effects of albumin by RAP.

TGF-β1 has been shown to induce its own production by acting through the TGF-β II receptor (23). Moreover, previous evidence has shown the induction of TGF-β II receptor signaling by albumin (33). Hence, we studied the role of TGF-β receptor activation in the secretion of TGF-β1 on albumin exposure in PTECs. Our data suggest that TGF-β receptor does not play a part in albumin-induced TGF-β1 secretion at 8 h of albumin exposure. However, this does not rule out the involve-
ment of TGF-β receptor II at later time points by the action of the secreted TGF-β1 by autoinduction (23). This is particularly relevant because albumin has been shown to upregulate TGF-β type II receptors in PTECS from 12 h onward (45).

One of the attractive alternative receptors for albumin-induced TGF-β1 production is the EGF receptor (EGFR). Recent data suggest the involvement of EGFR in albumin-induced signaling events (27).

There was a trend toward increased albumin-induced TGF-β1 secretion when endocytosis was inhibited (best seen with EIPA when used with 1 mg/ml albumin). Further work needs to be done to validate this finding. Interestingly parallels can be seen with receptors such as EGFR. It has been shown that inhibition of endocytosis of EGFR using a conditional dynamin mutant resulted in increased rather than reduced cell proliferation in response to EGF (40). If this were true with albumin-induced TGF-β1 secretion, it becomes theoretically possible that the TGF-β1 secreted in response to albumin by PTECs can potentially act by positive feedback where albumin induces the secretion of TGF-β1, which then inhibits albumin endocytosis (8), leading to further secretion of TGF-β1. A further positive feedback loop in the setting of proteinuric renal disease becomes a possibility because long-term exposure of PTECs to protein reduces albumin endocytosis (9), and this could potentially increase TGF-β1 secretion.

It is noteworthy that HKC-8 cells, a well-characterized PTEC line, display such a limited capacity for albumin endocytosis. The precise reason for this is unknown. This is despite the expression of megalin in these cells (data not shown).

Albumin has traditionally been believed to cause renal injury secondary to excessive tubular absorption by PTECs, abnormal accumulation of these proteins in the endolysosomes resulting in generation of reactive oxygen species, and activation of inflammatory cytokines into the interstitium (28). Drumm et al. (4) have shown that sodium/hydrogen exchanger-dependent endocytosis induces an increase in NF-κB activity in PTECs, which is inhibited by EIPA. By showing that albumin-induced TGF-β1 secretion is not dependent on endocytosis, we thus provide evidence for the first time that this commonly accepted mechanism of action of albumin on PTECs is not the only way in which albuminuria can potentially result in progressive renal fibrosis. Hence, emphasis must be placed on reducing glomerular leakage of albumin rather than attempting to reduce albuminuria can potentially result in progressive renal fibrosis rather than attempting to reduce albumin-induced NF-κB activation in renal proximal tubular cell lines (OK and LLC-PK1 cells). Eur J Med Res 6: 422–432, 2001.

Locatelli F, Marcelli D, Comelli M, Alberti D, Graziani G, Bucianti G, Redaelli B, Giangrande A, Northern Italian Cooperative Study Group T. Proteinuria and blood pressure as causal components of pro-

