Interference with TGF-β signaling by Smad3-knockout in mice limits diabetic glomerulosclerosis without affecting albuminuria

Amy Wang,1 Fuad N. Ziyadeh,2 Eun Young Lee,1,3 Petr E. Pyagay,1 Sun Hee Sung,4 Steven A. Sheardown,5 Nicholas J. Laping,5 and Sheldon Chen1

1Division of Nephrology/Hypertension, Northwestern University, Chicago, Illinois; 2Faculty of Medicine, American University of Beirut, Beirut, Lebanon; 3SoonChunHyang University College of Medicine, Cheonan, Korea; 4Department of Pathology, Ewha Womans University, Mok Dong Hospital, Seoul, Korea; 5Urogenital Biology, Cardiovascular Urogenital Centers of Excellence in Drug Discovery, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania

First published September 5, 2007; doi:10.1152/ajprenal.00274.2007.—Transforming growth factor (TGF)-β plays a critical role in diabetic nephropathy. To isolate the contribution of one of the signaling pathways of TGF-β, the Smad3 gene in the mouse was knocked out at exons 2 and 3, and the effect was studied in streptozotocin (STZ)-induced diabetes over a period of 6 wk. TGF-β activity was increased in the diabetic mice but was not able to signal via Smad3 in the knockout (KO) mice. As expected in the wild type, the kidneys of the STZ-diabetic mice showed both structural and functional defects that are characteristic of diabetic renal involvement. In the Smad3-KO mice, however, the defects that were improved were renal hypertrophy, mesangial matrix expansion, fibronectin overproduction, glomerular basement membrane thickening, plasma creatinine, and the blood urea nitrogen. The parameters not significantly altered by the Smad3-KO were albuminuria, reduction in podocyte slit pore density, and the increase in vascular endothelial growth factor abundance and activity. It seems that the absence of Smad3 modifies the natural course of murine diabetic nephropathy, providing renal functional protection and preventing structural lesions relating to kidney hypertrophy and matrix accumulation, even though albuminuria and changes in podocyte morphology persist. In conclusion, the effects of the Smad3-KO mirror the effects of anti-TGF-β therapy in diabetes, suggesting that the chief component of TGF-β signaling that is relevant to kidney disease is the Smad3 pathway.

streptozotocin; glomerular basement membrane thickening; mesangial matrix expansion; vascular endothelial growth factor; podocyte slit pore density

THE ACCUMULATION OF EXTRACELLULAR matrix proteins in the glomerular and tubulointerstitial spaces is a hallmark of diabetic kidney disease. The resulting diabetic glomerulosclerosis and tubulointerstitial fibrosis are thought to directly compromise filtration and nephron function, thus leading to progressive renal insufficiency. The matrix accumulation, to a large extent, is incited by the profibrotic cytokine, transforming growth factor-β (TGF-β). Specific inhibition of TGF-β activity by a neutralizing antibody or other means successfully prevents mesangial glomerulosclerosis, extracellular matrix overexpression, renal hypertrophy, and renal insufficiency in animal models of diabetic nephropathy (3, 11, 17, 23). However, the exact intracellular signaling mechanisms in the TGF-β pathway that are responsible for diabetic nephropathy remain to be defined.

Basic research on the action of TGF-β has uncovered a multitude of downstream signaling pathways and cross talk, but predominant among them is the intracellular Smad pathway. The Smad family comprises several members, but Smad2 and Smad3 in particular are governed by the TGF-β ligand. After activation by phosphorylation and partnering with a co-Smad4, the R-Smads translocate into the nucleus and, in conjunction with other transcription factors, help direct the activation and repression of genes regulated by TGF-β (2). Smad3 is thought to be the signaling arm that primarily mediates the autinduction of TGF-β and its effects on apoptosis and matrix expression (1, 7, 15, 16, 21). Smad2 overlaps somewhat with Smad3 (and also has its own distinctive effects) (13), but overall Smad2 seems to be relatively less important in the kidney, perhaps owing to its lack of sequence-specific DNA binding activity (18).

Given the centrality of the TGF-β system in the pathogenesis of diabetic nephropathy, we investigated the role of Smad3 in mediating the adverse effects of diabetes on the kidney. The mouse Smad3 gene was knocked out at exons 2 and 3, and in the process a nonsense mutation was introduced in exon 4 that truncates the Smad3 protein at 77 amino acids (out of a normal 425 amino acids). Type 1 diabetes, induced by injections of streptozotocin (STZ), was sustained for 6 wk, at which time albuminuria was a prominent feature, and the mice were analyzed for the effect of the Smad3 knockout (KO) on diabetic renal manifestations. We focused on hypertrophy and matrix-related changes, such as glomerular basement membrane (GBM) thickening, mesangial matrix expansion, and fibronectin production. Also examined were functional measures, including blood urea nitrogen (BUN), plasma creatinine, albuminuria, vascular endothelial growth factor (VEGF) expression and signaling, and podocyte morphometry.

MATERIALS AND METHODS

Smad3-KO mouse. All protocols using rodents were approved by the Institutional Animal Care and Use Committee and were in compliance with the NIH Guide for the Care and Use of Laboratory Animals. The homology arms that flank exons 2 and 3 of Smad3 were subcloned from a bacterial artificial chromosome, derived from a 129/Sv
F1658 Smad3 KNOCKOUT LIMITS GLOMERULOSCLEROSIS BUT NOT ALBUMINURIA

Fig. 1. A: schematic of the targeting vector to knock out (KO) exons 2 and 3 of the mouse Smad3 gene. The 5′ and 3′ homology arms were cloned into a vector with a neomycin (Neo) resistance cassette. Also depicted are the positions of the genotyping primers that distinguish between the wild-type (WT) and KO alleles. The “WT” primers yield a 701-bp PCR product (701 R primer will not bind to the KO allele), whereas the “KO” primers yield a 302-bp product. B: PCR done on genomic DNA with all four primers confirms that WT mice contain at least one WT Smad3 allele (701 bp), and KO mice contain only the targeted allele (302 bp, within Neo). Controls included no template (Neg), WT genomic DNA attempted with “KO” primers (lanes 6 and 7), and KO DNA attempted with “WT” primers (lane 8). The WT and KO mice shown here were representative of the entire group. C: RT-PCR done on total RNA from brain and colon confirms the presence of the Smad3 message at exons 2 and 3 in the WT mice (expected 141-bp product) and the absence of Smad3 mRNA in the KO mice. The negative controls (−) consisted of running the RT-PCR without reverse transcriptase. D: absence of phosphorylated and total Smad3 protein in the kidneys of Smad3-KO mice. The Western blot shows that Smad2 is present throughout, but phospho-Smad3 and total Smad3 are absent in the KO mice. The β-actin bands indicate that protein is present in all lanes.

Table 1. Characteristics of the WT and Smad3-KO mice at death, both nondiabetic and streptozotocin-diabetic

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>Body Weight, g</th>
<th>Kidney/Body Weight, mg/g</th>
<th>Heart Weight, g</th>
<th>Plasma Glucose, mg/dl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nondiabetic WT</td>
<td>9</td>
<td>30.4±0.9</td>
<td>14.2±0.4</td>
<td>0.17±0.01</td>
<td>106±16</td>
</tr>
<tr>
<td>Nondiabetic KO</td>
<td>4</td>
<td>28.0±1.0</td>
<td>13.2±0.7</td>
<td>0.18±0.01</td>
<td>96±17</td>
</tr>
<tr>
<td>STZ-diabetic WT</td>
<td>9</td>
<td>23.4±1.3*</td>
<td>18.7±0.7*</td>
<td>0.16±0.02</td>
<td>523±39*</td>
</tr>
<tr>
<td>STZ-diabetic KO</td>
<td>6</td>
<td>26.8±1.4</td>
<td>13.7±0.8</td>
<td>0.18±0.01</td>
<td>411±39*</td>
</tr>
</tbody>
</table>

Values are means ± SE; n, no. of mice. WT, wild type; KO, knockout; STZ, streptozotocin. *P < 0.01 vs. nondiabetic WT.

AJP-Renal Physiol • VOL 293 • NOVEMBER 2007 • www.ajprenal.org
GCATAGTCAGGAGCATCTTC-3; WT reverse is 5’-CAGGGTG-GAAGCCAAGTATAAG-3’; and predicted size is 701 bp. The WT primers will not detect a homozygous Smad3-KO genotype, because the WT reverse primer binds to a sequence that does not exist in the KO allele (Fig. 1A). To detect the Smad3-KO genotype, primers were designed to amplify the neomycin cassette. KO forward is 5’-AGAG-GCTATTCGGCTATGACTG-3’; KO reverse is 5’-AGCCATGATG-GATACTTTCTCG-3’; and predicted size is 302 bp. All four primers, WT forward/reverse and KO forward/reverse, were used simultaneously in the PCR genotyping of each Smad3-WT or -KO mouse. PCR denaturation was at 94°C for 2 min, followed by 35 cycles of denaturation at 94°C for 20 s, annealing at 56°C for 20 s, extension at 68°C for 1 min, and ending with extension at 68°C for 7 min. PCR products were analyzed by electrophoresis.

RT-PCR for Smad3. Total RNA was extracted from the brain and colon of Smad3-WT and -KO mice using TRIzol reagent (Invitrogen, Carlsbad, CA). Two micrograms of each RNA sample were reverse-transcribed using SuperScript II (Invitrogen). The resulting cDNA was PCR amplified using the forward primer 5’-GCA-CAGCCACCATGAAT-3’ (in Smad3 exon 2) and the reverse primer 5’-GTGTGGCGTGGCACCAAC-3’ (in exon 3). The predicted product size is 141 bp in WT mice, whereas no product is expected in KO mice. PCR denaturation was at 94°C for 2 min, followed by 35 cycles of denaturation at 94°C for 20 s, annealing at 68°C for 1 min, and ending with extension at 68°C for 7 min. PCR products were analyzed by electrophoresis.

Fig. 2. Transforming growth factor (TGF)-β1, Smad3, and Smad2 activities. A: the ratio of active (free) TGF-β1 to total TGF-β1 protein, measured by ELISA, was significantly increased in the kidney lysates of streptozotocin (STZ)-diabetic WT mice (*P < 0.01 vs. nondiabetic WT) and remained elevated in the diabetic Smad3-KO (*P = 0.05 vs. nondiabetic WT). B: downstream of the increased TGF-β1 activity was a demonstrable increase in the ratio of phosphorylated Smad3 to total Smad3, signifying activation of Smad3 in diabetes (*P < 0.05 vs. nondiabetic WT). KO mice were not analyzed because of the absence of Smad3. C: analysis of Smad2 activity, by measuring the phospho-Smad2-to-total Smad2 ratio, did not reveal any significant changes because of the Smad3 KO.

Fig. 3. Renal function. A: the mean plasma creatinine, measured by HPLC, was significantly elevated in the diabetic WT mice (*P < 0.01 vs. nondiabetic WT), compatible with reduced kidney filtration function. The increase in plasma creatinine with diabetes was prevented in the Smad3-KO mice (†P < 0.01 vs. STZ-diabetic WT). B: blood urea nitrogen (BUN) tracked with the plasma creatinine, increasing in diabetic WT mice (*P < 0.05 vs. nondiabetic WT) but remaining normal in diabetic KO mice (†P < 0.05 vs. STZ-diabetic WT).
at 54°C for 15 s, extension at 72°C for 15 s, and finishing with extension at 72°C for 5 min.

Western blotting. Kidney protein from each mouse was extracted in RIPA lysis buffer using mechanical homogenization techniques. Equalized concentrations of proteins were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (NuPAGE, Invitrogen) and electrically transferred onto a nitrocellulose membrane, which was probed with primary antibodies against phospho-Smad2/3 (Millipore, Billerica, MA), total Smad2 (Zymed/Invitrogen), total Smad3 (AnaSpec, San Jose, CA), phospho-VEGFR-2 (EMD Biosciences), total VEGFR-2 (Lab Vision), fibronectin (Lab Vision), and /H9252-actin (Sigma, St. Louis, MO). The Western signal was developed with the appropriate horseradish peroxidase-tagged secondary antibody and chemiluminescence substrate (Pierce, Rockford, IL). Densitometry of the bands captured on film was performed with ImageJ software (NIH, Bethesda, MD), corrected for /H9252-actin, and compared with control.

Analytic procedures. Plasma was submitted to Thomas Jefferson University (Philadelphia, PA) for an accurate measurement of creatinine concentration by high-performance liquid chromatography (6). BUN was measured by a colorimetric-based assay kit (BioAssay Systems, Hayward, CA). The plasma concentration of glucose, from a random blood sample obtained at death, was measured by the glucose oxidase method using an automated analyzer, the YSI 2300 STAT Plus (YSI, Yellow Springs, OH). Urinary albumin concentrations were determined by the Albuwell M kit (Exocell, Philadelphia, PA), an indirect ELISA. Urine creatinine concentration was assayed with the Creatinine Companion kit (Exocell). The data were used to calculate the AER per day and the urine albumin-to-creatinine ratio.

ELISA for TGF-β1. TGF-β1 in the kidney protein lysates was detected by a commercial ELISA kit (R&D Systems, Minneapolis, MN). Both active (i.e., free) TGF-β1 and total TGF-β1 were assayed separately for each kidney sample and read off of a concurrently performed standard curve. The active-to-total TGF-β1 ratio, indicative of the fraction of total TGF-β1 that is in the active form, is reported as a percentage of the control (nondiabetic WT group).

Renal morphometrics. For ultrastructural evaluation, kidney tissue was fixed in 3% glutaraldehyde, postfixed in 1% osmium tetroxide, and embedded in epoxy resin (epon). The specimen was thin sectioned, stained with lead citrate/uranyl acetate, and examined under a JEOL transmission electron microscope. Electron micrographs of 5–10 glomeruli per kidney were randomly taken at both ×1,500 and ×30,000 for each mouse. At the lower magnification, mesangial matrix was discernible, and its extent was measured as a percentage of the glomerular tuft area, with the aid of Image-Pro Plus software. At the higher magnification, mean GBM thickness was obtained from measurements at three different sites of cross sectioning, with the aid of Image-Pro Plus. Tangentially sectioned GBMs were excluded from the analysis. The mesangial matrix was also assessed by periodic acid-Schiff staining of kidneys fixed in 10% neutral buffered formalin and embedded in paraffin and sectioned at 5 μm.

Photomicrographs of the GBM were also analyzed for the density of open and “tight” slit pores between the podocyte foot processes, according to published methods (12, 20). The numbers of each type of slit pore were counted and divided by the GBM length (mm) to arrive at the linear density of podocyte slit pores.

Fig. 4. Albuminuria. A: diabetic mice, whether WT or KO, developed albuminuria that was roughly three times greater than in the nondiabetic WT mice (*P < 0.05). The KO of Smad3 did not significantly affect the albumin excretion rate (AER) per day (P = not significant for STZ-diabetic KO vs. diabetic WT). B: expressing albuminuria as the ratio of albumin to creatinine in a spot urine sample was comparable to the data depicting AER per day (*P < 0.05 vs. nondiabetic WT).

Fig. 5. Glomerular basement membrane (GBM) thickening. A: GBM thicknesses were measured across the whole GBM and across the lamina densa. STZ-diabetes caused GBM thickening in the WT mice (* or †P < 0.01 vs. nondiabetic WT), but was unable to do so in the Smad3-KO mice (** or ††P < 0.01 vs. diabetic WT). B: representative electron photomicrographs (magnification: ×30,000) show diabetic GBM thickening and its prevention in the Smad3-KO mice.
Immunohistochemistry. On 4-μm kidney sections, endogenous peroxidases were quenched with 2.25% H₂O₂, and nonspecific binding sites were blocked with avidin/biotin (Vector Laboratory, Burlingame, CA). Primary anti-VEGF antibody was added (1:500 dilution, Lab Vision, Fremont, CA), followed by biotinylated anti-rabbit secondary antibody (1:1,000) and avidin-conjugated horseradish peroxidase. Signal was developed with diaminobenzidine substrate, and the sections were counterstained with Gill’s no. 2 hematoxylin. Nonspecific staining was assessed by omitting the primary antibody. Photomicrographs of at least 20 fields in each mouse were quantitated for the intensity of peroxidase staining in the glomeruli with IPLab software (Scanalytics, Fairfax, VA).

Statistical analysis. Table and graphical data are displayed as the mean ± SE for the number of animals indicated. Values for each of the four groups of animals were compared using one-way analysis of variance and the post hoc Tukey’s test. When data were relevant for only two of the groups, e.g., Smad3 activation in the WTs, the unpaired Student’s t-test was used. Statistical significance was set at P < 0.05.

RESULTS

Verification of Smad3 KO. Genotyping of the Smad3-WT and -KO mice was done by PCR using primers that are specific for either the WT or KO allele, with predicted product sizes of 701 and 302 bp, respectively. Using the WT (“701”) and KO (“302”) primer sets simultaneously, PCR revealed a 701-bp band in all of the WT mice. On the other hand, all of the KO mice showed only the 302-bp band, indicating homozygosity for the targeted Smad3-KO allele (Fig. 1B). Genomic DNA from homozygous WT mice (lanes 6 and 7) could not be amplified with the “KO primers,” and genomic DNA from KO mice (lane 8) could not be amplified with the “WT primers.”

Smad3 gene expression was examined next. Evidence of the mRNA was sought by RT-PCR, specifically looking for exons 2 and 3, which were deleted in the KO mice. In total RNA preparations from brain and colon, the expected 141-bp band

Fig. 6. Mesangial matrix expansion. A: assessed by electron microscopy, the area of the glomerular tuft occupied by mesangial matrix was expressed as a percentage. STZ-diabetes induced mesangial matrix expansion in the WT mice (*P < 0.01 vs. nondiabetic WT) but failed to do so in the Smad3-KO mice (†P < 0.01 vs. STZ-diabetic WT). B: the increased mesangial matrix in representative electron photomicrographs (magnification: ×1,500) and periodic acid-Schiff stains (magnification: ×400) is evident in the diabetic WT mice and ameliorated in the diabetic KO mice.
appeared only in the WT mice and never in the KO mice (Fig. 1C).

Finally, Smad3 was assayed at the protein level to provide proof of the KO. By Western, phospho-Smad3 was present in all of the WT mice but none of the KO mice (Fig. 1D). Similarly, total Smad3 protein was detectable in WT mice but was completely absent in the KO mice (Fig. 1D). Adequate loading of the electrophoresis gel can be seen in the phospho-Smad2 and the β-actin bands.

Characteristics of the mice. At the end of the 6-wk experimental period, the nondiabetic WT and KO mice had similar weights. With poorly controlled STZ-induced diabetes, the WT mice lost significant amounts of weight (Table 1). In terms of total kidney mass corrected for body weight, WT mice showed a significant increase with diabetes, whereas the Smad3-KO mice showed no such increase in renal mass. Heart weights did not differ between any of the groups (P = not significant). Finally, plasma glucose concentrations were elevated in both total Smad3 was increased in the STZ-diabetic WT kidneys (Fig. 2B). Smad3 activation could not be assessed in the KO mice. In contradistinction to Smad3, Smad2 activity as evaluated by Western, phospho-Smad3 was present in the KO mice (Fig. 1B). By Western, phospho-Smad3 was present in the KO mice (Fig. 1B). By Western, phospho-Smad3 was present in the KO mice (Fig. 1B).

Renal TGF-β1, Smad3, and Smad2 activities. The activity of TGF-β1 was measured as the ratio of free (active) TGF-β1 to total TGF-β1 in preparations of kidney cortex protein lysates. TGF-β1 activity was increased in the diabetic state, regardless of the Smad3 genotype (Fig. 2A). As a result of the increased TGF-β1 activity, the phosphorylation of Smad3 as a fraction of total Smad3 was increased in the STZ-diabetic WT kidneys (Fig. 2B). Smad3 activation could not be assessed in the KO mice. In contradistinction to Smad3, Smad2 activity as evaluated by the ratio of phospho-Smad2 to total Smad2 was unchanged in the kidney of a Smad3-KO (Fig. 2C), arguing against a compensatory increase of Smad2 activity as a result of the Smad3 KO.

Renal function. The mean plasma creatinine concentration (Fig. 3A) and the BUN level (Fig. 3B) were both significantly increased in the STZ-diabetic WT mice vs. nondiabetic WT control. The rise in plasma creatinine with diabetes, however, was largely prevented in the diabetic Smad3-KO mice (P < 0.01 vs. STZ-diabetic WT), as was the rise in BUN (P < 0.05 vs. STZ-diabetic WT).

Diabetic albuminuria. The mean AER of the diabetic WT mice was roughly triple that of the nondiabetic mice (P < 0.05, Fig. 4A), but the diabetic albuminuria was not influenced by the Smad3 KO. In the absence of diabetes, the Smad3-KO mice did not spontaneously develop albuminuria. Quantifying albuminuria as the ratio of albumin-to-creatinine in a spot urine sample resulted in a graph (Fig. 4B) similar to the one depicting AER per day.

GBM thickening. The GBM thickness was increased by the diabetic state (Fig. 5). In the STZ-diabetic group, however, the Smad3-null genotype resulted in the prevention of GBM thickening. The Smad3-KO mice that remained nondiabetic did not show any change in GBM thickness compared with the control WT mice. Representative electron photomicrographs of the GBM thickness are shown in the control, diabetic WT, and diabetic Smad3-KO mice (Fig. 5B).

Mesangial matrix expansion. Expansion of the mesangium with extracellular matrix was quantified by electron microscopy. The mesangial matrix area as a percentage of the glomerular tuft area was enlarged in the STZ-diabetic state (Fig. 6A). However, mesangial matrix expansion was completely abrogated in the Smad3-KO mice, evident in the electron photomicrographs and periodic acid-Schiff stains of representative glomeruli (Fig. 6B).

Fibronectin expression. The kidney fibronectin content was evaluated by Western blot and found to be increased in the diabetic WT mice compared with nondiabetic controls (P < 0.01, Fig. 7). The increase in renal fibronectin with diabetes was significantly diminished by the Smad3 KO. However, for reasons unknown, the control Smad3-KO mice also had increased fibronectin, despite being nondiabetic.

VEGF levels and activity. STZ-induced diabetes significantly increased the level of VEGF protein, quantified by immunohistochemistry, in the periphery and the mesangium of the glomerulus (Fig. 8, A and B). In nondiabetic animals, the glomerular tuft rims also showed staining for VEGF, compatible with constitutive VEGF expression in the podocytes (19). The Smad3 KO did not influence the ambient level of VEGF in either control or diabetic mice.

VEGF signaling activity was concordant with the VEGF protein levels described above. Measured as the ratio of auto-phosphorylated VEGFR-2 to total VEGFR-2 (i.e., the extent of VEGF-2 activation), VEGF activity was increased in the kidneys of both STZ-diabetic groups, irrespective of the Smad3 genotype (Fig. 8C).

Slit pore density. The number of slit pores between podocyte foot processes per unit length of GBM, or slit pore density, was significantly decreased in the STZ-diabetic mice (Fig. 9). Concomitantly, the density of “tight” pores, identified as an obliteration of the space between adjacent foot processes, was increased in the STZ-diabetic mice. The KO of Smad3 did not
affect the slit pore density in either the nondiabetic or STZ-diabetic states. Changes in the open slit pore and “tight” pore densities were reciprocal to each other.

DISCUSSION

The two sets of diabetic mice, WT and KO, had equal opportunity to develop nephropathy in that both were hyperglycemic and had increased renal TGF-β. The critical difference was that the diabetes-induced increase in TGF-β could not translate into Smad3 activation in the KO mice, resulting in the prevention of TGF-β-related effects that can be categorized along the lines of hypertrophy and fibrosis. How did the diabetic Smad3-KO mice in the present study compare with the diabetic anti-TGF-β-treated mice from a prior study (23)? For the most part, they were concordant in terms of the diabetic kidney lesions that were ameliorated: renal hypertrophy, GBM thickening (4), mesangial matrix expansion, and fibronectin overexpression (23). The prevention of fibronectin overexpression may have its basis in the fact that the fibronectin promoter contains Smad binding elements and the TGF-β-induced gene transcription of fibronectin is Smad3 dependent, as shown by the use of a Smad3 dominant negative (10).

However, the interruption of Smad3 signaling did not improve all aspects of diabetic nephropathy. Albuminuria was not ameliorated by the Smad3 KO, at least not after 6 wk of STZ-induced diabetes. This is not to say that the lack of Smad3 would not have decreased diabetic albuminuria at some point, but ours was not a longitudinal study. Interestingly, albuminuria also failed to improve in the diabetic db/db mice treated with an anti-TGF-β antibody (2G7) (23), concordant with our Smad3-KO findings. On the other hand, another panselective anti-TGF-β antibody (1D11) did reduce proteinuria, albeit in the STZ-diabetic rat after uninephrectomy (3). The intriguing finding from that study was that a different antibody targeting only TGF-β1 and -β2 (CAT-192) did not protect against the development of diabetic proteinuria, suggesting that its pathogenesis is influenced principally by the TGF-β3 isoform (3).

Further complicating the picture is the finding by Fujimoto et al. that diabetic albuminuria is relatively prevented in a different Smad3-KO mouse model (9). At 4 wk of STZ-diabetes, their WT mice (also C57BL/6 strain) showed a urine albumin excretion that was >20-fold increased compared with that of the nondiabetic WT. Compared with the same control,
Smad3 mutants should be nonfunctional (22), demonstrated by the complete absence of phospho-Smad3. Besides, our 77-amino acid fragment contains just one of the eight phosphorylatable serine/threonine residues (T8). But the Smad3 exon 8 deletion used by Fujimoto et al. (9) contains five of the eight phosphosites (T8, T179, S204, S208, S213). It remains to be determined whether the molecular and phenotypic differences between our models might explain the disparity in the effect on diabetic albuminuria.

We found support for the persistence of diabetic albuminuria in the Smad3-KO mice by examining the mechanisms related to podocytopathy and a vascular permeability factor, better known as VEGF. The protein levels of VEGF and its signaling via the VEGFR-2 receptor were increased by diabetes and remained elevated in the Smad3-KO group. As a cytokine, VEGF seems to impact the development of diabetic albuminuria more than TGF-β (20, 23), although TGF-β signaling through Smad3 does not appear to be a major determinant of the VEGF increase in the diabetic kidney. In addition, albuminuria correlates with podocyte morphology, and the reduction in podocyte slit pore density was not countered by the Smad3 KO, leading to the prediction that diabetic KO mice would remain albuminuric.

Despite the persistence of albuminuria in the diabetic KO mice, kidney function remained normal, as assessed by the plasma creatinine and the BUN. Nephroprotection in diabetes was also achieved with an anti-TGF-β treatment in db/db mice (23). In that study, kidney function was maintained, despite the persistent albuminuria (23), implying that albuminuria incites renal functional damage through the TGF-β system (14). Our present study goes one step further to suggest that the bulk of the harmful effects of TGF-β may be mediated by Smad3 signaling.

In summary, the Smad3 pathway plays a crucial role in the mechanisms whereby the overactivity of TGF-β gives rise to the structural manifestations of diabetic injury in the kidney. These include renal hypertrophy, GBM thickening, mesangial matrix expansion, and fibronectin overexpression. The prevention of these histopathological lesions may be sufficient to confer renoprotection, although the Smad3 KO may entail other beneficial effects. In contrast, the Smad3 pathway does not seem to participate in the process of diabetic albuminuria, which is probably more influenced by the VEGF system (5, 8, 20). Still, the effects of the Smad3 KO were closely matched with the historical benefits of anti-TGF-β therapy, arguing for a predominance of the Smad3 arm in mediating the injurious effects of TGF-β in diabetic kidney disease.

ACKNOWLEDGMENTS

The authors thank Evelyn Grau and Susan Pickering at GlaxoSmithKline for handling microinjections and animal husbandry. F. N. Ziyadeh and S. Chen are grateful to the University of Pennsylvania Renal Division where part of the work was done.

GRANTS

Research was supported by the National Institute of Diabetes and Digestive and Kidney Diseases (DK061537 to S. Chen and DK044513 to F. N. Ziyadeh), the American Heart Association (to F. N. Ziyadeh), a stipend from Ewha Womans University (to S. H. Sung), and an International Fellowship Award of the International Society of Nephrology (to E. Y. Lee).
REFERENCES

