The natriuretic and diuretic response to dopamine is maintained during rat pregnancy

Jennifer M. Sasser1 and Chris Baylis1,2

1Department of Physiology and Functional Genomics and 2Department of Medicine, University of Florida, Gainesville, Florida

Submitted 7 February 2008; accepted in final form 4 April 2008

Sasser JM, Baylis C. The natriuretic and diuretic response to dopamine is maintained during rat pregnancy. Am J Physiol Renal Physiol 294: F1342–F1344, 2008. First published April 9, 2008; doi:10.1152/ajprenal.00067.2008.—During pregnancy, there is a marked plasma volume expansion due to renal sodium retention. Pregnant rats exhibit a blunted response to natriuretic stimuli that signal via cGMP, and expression and activity of the cGMP phosphodiesterase PDE-5 are upregulated in the inner medullary collecting duct during pregnancy. Here, we tested the hypothesis that the natriuretic response to a cAMP agonist, dopamine, is maintained during pregnancy. Anesthetized pregnant (day 16) and age-matched virgin Sprague-Dawley rats were used to determine whether dopamine-cAMP-mediated natriuresis remains intact in pregnant rats. Blood pressure, renal clearances of inulin and p-aminohippuric acid, and excretion of sodium were measured during baseline and dopamine infusion periods. Pregnant rats had a lower blood pressure and hematocrit at baseline than their age-matched virgin counterparts. Dopamine infusion decreased blood pressure and increased glomerular filtration rate and renal plasma flow in virgin but not pregnant rats. Dopamine infusion also increased urine volume, sodium excretion, and the fractional excretion of sodium to a similar extent in virgin and pregnant rats. These results indicate that a cAMP-mediated natriuresis and diuresis (stimulated by dopamine) persist in pregnant rats.

Methods

All experiments were performed using female Sprague-Dawley rats (3–5 mo old; Harlan Laboratories, Indianapolis, IN) in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and approved and monitored by the University of Florida Institutional Animal Care and Use Committee. Rats were housed at the University of Florida Animal Care Services unit at a constant temperature and humidity with 12:12-h light-dark cycles and given free access to tap water and standard laboratory chow. Females chosen to become pregnant were housed with males, daily vaginal smears were taken, and the presence of sperm was taken as day 1 of pregnancy and confirmed by the presence of fetuses in utero at the time of acute study.

Experiments were conducted on rats at day 16 of pregnancy (n = 7) and age-matched virgins (n = 8). Rats were anesthetized with 100 µl/100 g body wt of 120 mg/ml Inactin (Sigma, St. Louis, MO), placed on a heated table to maintain body temperature at 37 ± 1°C, a tracheotomy was performed, and oxygen was blown across the tracheal tube throughout the experiment. The left femoral vein was cannulated with PE-50 tubing, and an infusion was started at 5 µl·100 g body wt−1·min−1 of 0.90% NaCl, 6.4 mg/ml FITC-inulin, and 11.52 mg/ml p-aminohippuric acid (PAH, Sigma). The left femoral artery was cannulated with PE-50 tubing to monitor blood pressure (BP) and to collect blood samples. A suprapubic midline abdominal incision was made, and the bladder was exposed and catheterized for the collection of urine with PE-50 tubing. The bladder was placed back under the skin, and the area was covered with parafilm (Pechiney). After a 60-min stabilization period two × 20-min baseline urine collections and midpoint blood samples (250 µl) were taken. Then, dopamine (Sigma) was added to the left femoral vein infusion at 12.5 µg·kg−1·min−1. After a 15-min period, two further 20-min urine collections and blood samples were taken. The uterus and pups were checked to confirm viability at the end of the experiment, then the rat was killed with an overdose of anesthetic, and the left kidney was removed and weighed. The blood was centrifuged, and plasma was used to measure inulin, PAH, and sodium concentration.

To calculate glomerular filtration rate (GFR), inulin concentration in urine and plasma was measured in a black, clear bottom 96-well plate on a Tecan Safire optical system (Tecan) reading fluorescence at 410 nm.

Address for reprint requests and other correspondence: J. Sasser, Dept. of Physiology and Functional Genomics, Univ. of Florida, PO Box 100274, Gainesville, FL 32610 (e-mail: jmsasser@ufl.edu).

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
485-nm excitation/530-nm emission. PAH concentration was established using a colorimetric assay previously described (2) to calculate renal plasma flow (RPF). Sodium and potassium concentrations were measured on a flame photometer using cesium as the internal standard (1:100 dilution of sample in 1.5 mmol/l CsCl solution, Instrumentation Laboratory).

Results are presented as means ± SE. Paired and unpaired t-tests with a two-tailed P value were used to compare between treatments and time points using Prism 4 software (GraphPad Software, Inc., San Diego, CA).

RESULTS

The pregnant rats had a lower mean arterial pressure (MAP) and hematocrit (Hct) at baseline than their age-matched virgin counterparts (Table 1). Dopamine infusion decreased MAP in virgin rats but had no effect on MAP in the pregnant rats, and dopamine infusion had no effect on Hct in either group. At baseline, GFR, RPF, and urine volume were not different between virgin and pregnant rats. Dopamine infusion significantly increased GFR and RPF in the virgin rats, but there was no change in GFR or RPF in the pregnant group. Dopamine infusion produced a diuresis in both virgin and pregnant rats.

As shown in Fig. 1A, there was no significant difference in baseline sodium excretion (UNaV) between the virgin and pregnant rats. Dopamine infusion resulted in a significant rise in sodium excretion in both groups, and the magnitude of the natriuresis was similar (Fig. 1B). The fractional excretion of sodium (FENa) was similar at baseline between virgin and pregnant rats, and the dopamine-induced increase in FENa was similar (Fig. 2A) as was the percent rise in FENa with dopamine (Fig. 2B).

DISCUSSION

The main finding in this study is that dopamine has a similar diuretic and natriuretic action in both virgin and pregnant rats.

Table 1. Effect of dopamine infusion on mean arterial pressure, hematocrit, glomerular filtration rate, renal plasma flow, and urine flow in virgin and 16-day pregnant rats.

<table>
<thead>
<tr>
<th></th>
<th>MAP, mmHg</th>
<th>Hct, ml/100 ml</th>
<th>GFR, ml/min</th>
<th>RPF, ml/min</th>
<th>UV, ml/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virgin baseline</td>
<td>116 ± 2</td>
<td>44.8 ± 0.3</td>
<td>2.4 ± 0.2</td>
<td>4.3 ± 0.3</td>
<td>7.7 ± 12</td>
</tr>
<tr>
<td>Virgin dopamine</td>
<td>108 ± 2*</td>
<td>44.9 ± 0.6</td>
<td>3.0 ± 0.2*</td>
<td>5.1 ± 0.2*</td>
<td>11.4 ± 1.5*</td>
</tr>
<tr>
<td>Pregnant baseline</td>
<td>100 ± 2†</td>
<td>39.0 ± 6.1†</td>
<td>2.2 ± 0.4</td>
<td>3.9 ± 0.7</td>
<td>10.6 ± 1.9</td>
</tr>
<tr>
<td>Pregnant dopamine</td>
<td>97 ± 1</td>
<td>38.9 ± 1.1</td>
<td>2.5 ± 0.3</td>
<td>4.1 ± 0.6</td>
<td>13.9 ± 2.0*</td>
</tr>
</tbody>
</table>

Values are means ± SE. MAP, mean arterial pressure; Hct, hematocrit; GFR, glomerular filtration rate; RPF, renal plasma flow; UV, urine flow. *P < 0.05 vs. respective baseline. †P < 0.05 vs. age-matched virgin.

![Fig. 1. A: urinary sodium excretion (UNaV) in the baseline state and during intravenous infusion of dopamine (12.5 μg·kg body wt⁻¹·min⁻¹) in virgin and pregnant rats. *P < 0.05 vs. respective baseline. B: summary of the increase in UNaV during dopamine infusion in virgin and pregnant rats.](http://ajprenal.physiology.org/)

![Fig. 2. A: fractional excretion of sodium (FENa) in the baseline state and during intravenous infusion of dopamine (12.5 μg·kg body wt⁻¹·min⁻¹) in virgin and pregnant rats. *P < 0.05 vs. respective baseline. B: summary of the increase in FENa during dopamine infusion in virgin and pregnant rats.](http://ajprenal.physiology.org/)
These data suggest that the renal response to natriuretic stimuli that act via the adenyl cyclase-cAMP pathway is preserved during pregnancy. This is in contrast to the guanylyl cyclase-cGMP pathway as the natriuretic response to ANP is blunted during pregnancy (7, 12, 15, 16).

One limitation of this study is that rats were anesthetized during the measurements of renal function. This is of particular concern because barbiturate anesthesia has been shown to influence renal tubular sodium reabsorption (19) and because the pregnant rat is highly sensitive to general anesthesia and acute surgery (3). However, in previous studies using infusion of ANP as the natriuretic stimulus (10, 12), we have seen similar findings in anesthetized and conscious rats; i.e., in both cases, the pregnant rats showed blunted natriuresis compared with virgin rats. Therefore, the anesthetized pregnant rat preparation is valid for the study of renal tubular responsiveness to natriuretic signals.

During pregnancy, women and rats undergo a massive plasma volume expansion that is the result of net, continual renal sodium and fluid retention (1, 9). In the rat, metabolic cage studies have demonstrated a positive sodium balance during pregnancy, predominately during the last trimester (6). It has also been shown that inhibition of volume expansion by restricting sodium intake in the rat compromises pregnancy close to term (17). In women, plasma volume expansion is an accurate predictor of fetal outcome, with suboptimal plasma volume expansion in pregnancy being associated with “small for gestational age” babies (5). Because of the importance of volume expansion to pregnancy and fetal development, we need to understand the mechanisms involved in renal sodium retention. However, volume regulation in pregnancy is complicated with increases in both natriuretic and antinatriuretic stimuli. Sodium-retaining signals such as activation of the renin-angiotensin-aldosterone system, increased ureteral pressure, and a fall in blood pressure all occur. At the same time, there is a large increase in GFR and increased production of progesterone, ANP, and renal nitric oxide (NO), all of which are expected to promote sodium excretion (1, 4, 8). The reasons that sodium retention prevails remain unknown.

One possible explanation for sodium retention in pregnancy is that there is a selective renal resistance to natriuretic agents. Indeed, we and others have shown that the natriuretic response to exogenous and endogenous ANP is significantly blunted in the pregnant rat (7, 12, 14). Also, the pressure-natriuresis response, likely mediated via NO, is markedly attenuated in late pregnancy (13). Because the tubular natriuretic responses to both ANP and NO are mediated by the second messenger cGMP, impaired cGMP action could account for the blunted natriuresis to these signals during pregnancy.

We have previously shown that there is a selective increase in PDE-5, an enzyme that specifically degrades cGMP, in the inner medulla of pregnant rats (14). In inner medullary collecting duct cells isolated from pregnant rats, cGMP accumulation in response to ANP is reduced, and cGMP hydrolysis is increased compared with cells from virgin controls, and this is normalized by inhibition of PDE-5. Furthermore, PDE-5 inhibition in vivo reversed the blunted natriuresis to an infusion of ANP in pregnant rats (10).

The current study extends these previous observations by illustrating the selectivity of the blunted natriuresis in pregnancy. The natriuretic response to dopamine, a cAMP agonist, is maintained during pregnancy, suggesting that the tubular resistance to natriuretic stimuli observed during pregnancy is specific to agents that activate the cGMP signaling pathway.

ACKNOWLEDGMENTS

We thank Harold Snellen for expert technical assistance. Portions of this work have appeared in abstract form (J Am Soc Nephrol 18: 595A, 2007).

GRANTS

This work was supported by a Postdoctoral Fellowship from the American Heart Association (to J. M. Sasser) and a National Institute of Child Health and Human Development Grant HD-041571 (to C. Baylis).

REFERENCES

AJP-Renal Physiol • VOL 294 • JUNE 2008 • www.ajprenal.org