Regulation of Na\(^+\)/H\(^+\) exchanger NHE3 by glucagon-like peptide 1 receptor agonist exendin-4 in renal proximal tubule cells

Luciene R. Carraro-Lacroix,\(^1\) Gerhard Malnic,\(^1\) and Adriana C. C. Girardi\(^{1,2}\)

\(^1\)Department of Physiology and Biophysics, Institute of Biomedical Sciences; \(^2\)Heart Institute (InCor), Medical School, University of São Paulo, and \(^3\)Department of Physiology, Federal University of São Paulo, São Paulo, Brazil

Submitted 12 February 2009; accepted in final form 17 September 2009

Carraro-Lacroix LR, Malnic G, Girardi AC. Regulation of Na\(^+\)/H\(^+\) exchanger NHE3 by glucagon-like peptide 1 receptor agonist exendin-4 in renal proximal tubule cells. Am J Physiol Renal Physiol 297: F1647–F1655, 2009. First published September 23, 2009; doi:10.1152/ajprenal.00082.2009. —The gut incretin hormone glucagon-like peptide 1 (GLP-1) is released in response to ingested nutrients and enhances insulin secretion. In addition to its insulinotropic properties, GLP-1 has been shown to have natriuretic actions paralleled by a diminished proton secretion. We therefore studied the role of the GLP-1 receptor agonist exendin-4 in modulating the activity of Na\(^+\)/H\(^+\) exchanger NHE3 in LLC-PK1 cells. We found that NHE3-mediated Na\(^+\)-dependent intracellular pH (pHi) recovery decreased ~50% after 30-min treatment with 1 nM exendin-4. Pharmacological inhibitors and cAMP analogs that selectively activate protein kinase A (PKA) or the exchange protein directly activated by cAMP (EPAC) demonstrated that regulation of NHE3 activity by exendin-4 requires activation of both cAMP downstream effectors. This conclusion was based on the following observations: 1) the PKA antagonist H-89 completely prevented the effect of the PKA activator but only partially blocked the exendin-4-induced NHE3 inhibition; 2) the MEK1/2 inhibitor U-0126 abolished the effect of the EPAC activator but only diminished the exendin-4-induced NHE3 inhibition; 3) combination of H-89 and U-0126 fully prevented the effect of exendin-4 on NHE3; 4) no additive effect in the inhibition of NHE3 activity was observed when exendin-4, PKA, and EPAC activators were used together. Mechanistically, the inhibitory effect of exendin-4 on pHi recovery was associated with an increase of NHE3 phosphorylation. Conversely, this inhibition took place without changes in the surface expression of the transporter. We conclude that GLP-1 receptor agonists modulate sodium homeostasis in the kidney, most likely by affecting NHE3 activity.

NHE3 IS THE APICALLY LOCATED Na\(^+\)/H\(^+\) exchanger that mediates the majority of NaCl and NaHCO\(_3\) reabsorption in the renal proximal tubule (2, 42, 47, 48, 50). Numerous physiological and humoral factors regulate NHE3 activity, thereby contributing to the fine control of fluid and electrolyte homeostasis (1, 8, 12, 40, 46, 52).

To understand the molecular mechanisms underlying regulation of NHE3, there has been great interest in identifying proteins that associate with the transporter. We previously reported (13) that NHE3 and the serine protease dipeptidyl peptidase IV (DPPIV) reside together as an oligmeric complex in the renal proximal tubule. The functional role of DPPIV in regulating NHE3 activity has been shown in OKP cells (a line of opossum proximal tubule cells) (15) and in the intact proximal tubule in vivo (14). We have demonstrated that highly specific competitive inhibitors that bind to the active site of DPPIV significantly reduce NHE3 function, suggesting that the DPPIV catalytic site has a tonic role in stimulating NHE3 (14, 15).

DPPIV is a multifunctional protein expressed on the surface of several cell types, including epithelial cells, endothelial cells, and lymphocytes (34). It selectively cleaves NH\(_2\)-terminal dipeptides from proteins having proline or alanine in amino acid position 2 (25, 34). DPPIV also acts as a binding protein (34) and signaling molecule (29, 34).

Currently, the molecular mechanisms by which DPPIV modulates NHE3 activity are not well understood. DPPIV is known to degrade a variety of peptide hormones, cytokines, and chemokines (34, 37). It is possible that DPPIV plays a tonic role in stimulating NHE3 by processing an inhibitory peptide involved in modulation of the transporter. The effect of DPPIV inhibition on NHE3 activity might thereby be mediated by increasing the half-life of this candidate peptide. One such candidate is the DPPIV substrate glucagon-like peptide 1 (GLP-1).

GLP-1 is a hormone produced in intestinal L-type cells and released into the bloodstream in response to ingested food (9, 23). It stimulates β-cell proliferation and insulin secretion in a glucose-dependent manner, suppresses glucagon secretion, inhibits gastric emptying, and reduces appetite and food intake (4, 9, 10, 23). As a result of such biological actions, GLP-1 is considered a potential therapeutic agent for type 2 diabetes. However, the usefulness of native GLP-1 is limited because of its rapid inactivation by DPPIV (7, 30). In contrast, exendin-4, a 39-amino acid peptide that shares 53% sequence homology with GLP-1, has a much higher in vivo half-life on account of its NH\(_2\)-terminal resistance to DPPIV cleavage (45). Exendin-4 was originally isolated from the salivary glands of the Gila monster (Heloderma suspectum), a poisonous lizard from the deserts of Arizona (11), and is now registered as an antiadipogenic agent under the name of Byetta (4).

The effects of GLP-1 and exendin-4 are mediated after binding to a specific plasma membrane receptor of the G protein-coupled receptor family (GLP-1R). The GLP-1R is expressed not only in the pancreatic β-cell but also in the brain, the kidneys, the lungs, the pituitary gland, the heart, the stomach, the small intestine, and major blood vessels (10, 23, 41). This widespread distribution of the GLP-1R suggests that GLP-1 may exert a large variety of biological actions.

Animal studies indicate that GLP-1 has natriuretic and diuretic properties (35, 39, 51), and infusion studies in humans confirm these actions (19, 20), suggesting a potential role for
this peptide in sodium and water homeostasis. It is noteworthy that Gutzwiller and colleagues (20) found that intravenous infusion of GLP-1 into healthy and insulin-resistant obese subjects not only increases urinary sodium excretion but also reduces urinary proton secretion, implicating a role for GLP-1 in modulation of renal Na+/H+ exchange.

On the basis of these observations, the present study was undertaken to evaluate the role of the GLP-1R agonist exendin-4 in modulating the activity of NHE3 in the kidney proximal tubule. We demonstrate that exendin-4 significantly inhibits NHE3-mediated Na+-dependent intracellular pH (pHi) recovery in LLC-PK1 cells, supporting the notion that GLP-1R agonists modulate sodium homeostasis in the kidney, most likely by affecting NHE3 activity.

METHODS

Materials. The LLC-PK1 cell line first described by Hull et al. (28) was obtained from the American Type Culture Collection (Manassas, VA). Dulbecco's modified Eagle's medium (DMEM), heat-inactivated fetal bovine serum, sodium pyruvate, and penicillin-streptomycin were purchased from Gibco Invitrogen (Grand Island, NY). BCFEF-AM was obtained from Molecular Probes (Eugene, OR). Exendin-4, exendin-9 and GLP-1 were from Bachem (Torrance, CA). HOE-694 and S3226 were gifts from Sanofi-Aventis (Frankfurt, Germany). The cAMP analogs 8-(4-chlorophenylthio)-2′-O-methyladenosine-3′,5′-cyclic monophosphate (8-pCPT-2′-O-Me-cAMP) and Nα-monobutyryladenosine-3′,5′-cyclic monophosphate (6MB-cAMP) were from BioLog Life Science Institute (Bremen, Germany). EZ-Link sulfo-NHS-biotin as well as immunopure immobilized streptavidin were purchased from Pierce (Rockford, IL). Rabbit polyclonal anti-NHE3 antibody was from Zymed laboratory (Beverly, MA). The monoclonal (MAb) anti-NHE3 antibody streptavidin were purchased from Pierce (Rockford, IL). Rabbit polyclonal anti-NHE3 antibody 2B9 (2) was kindly provided by Dr. Peter Aronson and Dr. Daniel Biemesderfer at Yale University. In a previous paper, we described (13) the development and characterization of MAB 1D11 to rabbit DPP IV. Horseradish peroxidase-conjugated goat anti-mouse and goat anti-rabbit secondary antibodies were purchased from Zymed laboratories (San Francisco, CA). All other materials were from Sigma-Aldrich (St. Louis, MO), if not stated otherwise.

Cell culture. Cell passages 2–10 were used in our experiments. LLC-PK1 cells were maintained in 75-cm² tissue culture flasks in DMEM supplemented with 45 mM NaHCO₃, 25 mM HEPES buffer, 0.1 mM sodium pyruvate, 0.01 mM nonessential amino acids, 10% (vol/vol) heat-inactivated fetal bovine serum, 100 U/ml penicillin, and 100 μg/ml streptomycin. Cultures were incubated at 37°C in a humidified 5% CO₂ atmosphere. Cells were subcultured with Ca²⁺/Mg²⁺-free phosphate-buffered saline and 0.25% trypsin-EDTA. The medium was replaced every 2 days. For experiments, cells were seeded onto tissue culture plates, grown to confluence, and the serum starved for 24 h before studies.

RT-PCR. Total RNA was extracted from LLC-PK1 cells with TRIzol reagent (Invitrogen) and from rat tissues (renal cortex, renal medulla, and pancreas) with guanidinium thiocyanate. The quality and quantity of RNA were assessed by spectrophotometry at 260 and 280 nM. First-strand cDNA synthesis was performed with SuperScript III reverse transcriptase according to the manufacturer's recommended protocols. The resulting cDNAs (50 ng each) were subjected to PCR using the degenerated oligonucleotide primers 5′-TGTAACCGGT-TCTGACCRGCTA-3′ (forward) and 5′-AAGCGATGACCARS-GCGGAGA-3′ (reverse). The degenerate primers for the amplification of GLP-1R cDNA were designed according to the conserved sequences between porcine (GenBank accession no. CV871385) and rat (GenBank accession no. NM_012728) genes. The expected size of the amplified DNA band was 189 bp. The amplification conditions consisted of initial denaturation (95°C for 5 min) followed by 30 cycles: 95°C for 30 s, 60°C for 30 s, 72°C for 1 min, with final extension at 72°C for 10 min. PCR products were detected with agarose gel electrophoresis.

cAMP assays. cAMP levels were measured by enzyme immunoassay (cAMP Direct Biotrak EIA, GE Healthcare) according to manufacturer’s instructions. Experiments were performed in the presence of the phosphodiesterase inhibitor IBMX (1 mM).

Fluorescence microscopy measurement of pHi. NHE activity was measured in LLC-PK1 cells as the rate of Na⁺-dependent pHi recovery after an acid load. Dual excitation ratio determinations from the fluorescent pH-sensitive probe BCECF were used to measure pHi, as previously detailed (5). Briefly, cells were grown to confluence on glass slides, placed into a thermostatically regulated chamber, and mounted on an inverted epifluorescence microscope (Nikon, TMD). Next, they were loaded with 10 μM BCECF acetoxyethyl ester in Ringer solution (solution 1, Table 1) for 10 min. The acetoxyethyl ester form of BCECF enters the cell and is rapidly converted to the anionic-free acid form by intracellular esterases. After the loading period, the glass coverslips were rinsed with the control solution to remove the BCECF-containing solution for a few minutes and pre-pulsed with 20 mM NH₄Cl in HEPES-buffered control solution (solution 3, Table 1) at 37°C for subsequent acid loading. Fluorescence was measured by using 440 (pH insensitive) or 495 (pH sensitive) nm alternately as excitation wavelengths utilizing a xenon light source. Emission was measured at 530 nm by a photomultiplier-based fluorescence system (Georgia Instruments, PMT-4000) at time intervals of 5 s. pH was calibrated by equilibrating the cells with high-K⁺ medium (solution 2, Table 1) titrated to defined pH values and containing 10 μg/ml nigericin.

Cell pH recovery. Cell pH recovery was examined after the acidification of pHi with the NH₄Cl pulse technique after 2-min exposure to 20 mM NH₄Cl (solution 3, Table 1) in the presence of external 145 mM Na⁺ (solution 1, Table 1). In all experiments, we calculated the initial rate of pH recovery (d pH/dt, pH units/min) from the first 2 min after the start of the pH recovery curve by linear regression analysis.

Measurement of intracellular buffering capacity. In our system, intracellular buffering capacity (βi) corresponds to the sum of the individual buffering powers of all cytosolic buffers, excluding HCO₃⁻/CO₂. Hence, estimations of βi were performed with HEPES-buffered solutions. βi was determined with the technique described by Boyarsky et al. (3) and calculated as described by Weintraub and Machen (49). The H⁺ membrane transporters were blocked by a Na⁺-free solution plus 0.1 μM concanamycin. After removal of Na⁺ from the external medium, the cells were exposed to a HEPES-buffered solution containing 50 mM NH₄Cl, which was then stepwise reduced to 1 mM (in 50, 20, 10, 5, 2.5, and 1 mM steps). Calculation of βi was performed using the technique described by Weintraub and Machen (49).

Table 1. Composition of solutions

<table>
<thead>
<tr>
<th>Reagents</th>
<th>Solution 1</th>
<th>Solution 2</th>
<th>Solution 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>141.0</td>
<td>20.0</td>
<td>121.0</td>
</tr>
<tr>
<td>KCl</td>
<td>5.4</td>
<td>130.0</td>
<td>5.4</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>0.4</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>0.4</td>
<td>1.0</td>
<td>0.4</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>0.4</td>
<td>1.0</td>
<td>0.4</td>
</tr>
<tr>
<td>MgSO₄</td>
<td>0.3</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Na₂HPO₄</td>
<td>10.0</td>
<td>5.0</td>
<td>10.0</td>
</tr>
<tr>
<td>HEPES</td>
<td>0.6</td>
<td>6.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Glucose</td>
<td>20.0</td>
<td>7.4</td>
<td>7.4</td>
</tr>
</tbody>
</table>

All values are in mM, except for pH. NMDG, N-methyl-D-glucamine. HCl or NaOH was used in all Na⁺-containing solutions to titrate to the appropriate pH, and KOH was used in the Na⁺-free solution.
performed according to the formula \(\beta = \Delta [\text{NH}_4^+] / \Delta p\text{H}_2 \) where the intracellular \([\text{NH}_4^+] \) was calculated from the Henderson-Hasselbalch equation on the assumption that \([\text{NH}_3] = [\text{NH}_3^+] \).

Immunoprecipitation. LLC-PK₁ cells grown in six-well plates were solubilized at 4°C in a modified RIPA buffer containing 150 mM NaCl, 5 mM EDTA, 1% (vol/vol) Triton X-100, 0.5% (wt/vol) deoxycholate, 50 mM Tris-\(\cdot \)HCl, pH 7.4, supplemented with protease inhibitors (0.7 \(\mu \)g/ml pepstatin A, 0.5 \(\mu \)g/ml leupeptin, and 40 \(\mu \)g/ml PMSF) and phosphatase inhibitors (50 mM NaF and 15 mM sodium pyrophosphate). The samples were subjected to centrifugation (14,000 g for 10 min) with a table top centrifuge (Eppendorf model 5402R). Fifty micrograms of primary antibodies was added to the supernatants, and the samples were incubated at 4°C for 1 h. Immune complexes were collected with 5 mg/sample of protein G-Sepharose 4B (GE Healthcare). The beads were washed five times in modified RIPA buffer and then prepared for SDS-PAGE and immunoblotting.

Cell surface biotinylation. The assay was performed as described previously (15). Cells were rinsed twice in ice-cold PBS-Ca-Mg (PBS with 0.1 mM CaCl₂, 1.0 mM MgCl₂). Surface membrane proteins were then biotinylated by incubating the cells twice for 25 min with 2 ml of ice-cold biotinylation buffer (150 mM NaCl, 10 mM triethanolamine, 2 mM CaCl₂, and 2 ml/gm EZ-Link sulfo-NHS-S antibiot). Cells were then rinsed twice for 20 min with a quenching buffer (PBS-Ca-Mg, 100 mM glycine), washed twice with ice-cold PBS-Ca-Mg, and scraped into ice-cold solubilization buffer (50 mM Tris, 150 mM NaCl, 1 mM EDTA, 0.5% sodium deoxycholate, 1% Triton X-100, pH 7.4) containing protease inhibitors (0.7 \(\mu \)g/ml pepstatin A, 0.5 \(\mu \)g/ml leupeptin, and 40 \(\mu \)g/ml PMSF). After lysis on ice for 60 min, extracts were centrifuged for 10 min at 14,000 g and 4°C. The protein concentration of the supernatants was measured (36), and equal protein amounts of cell lysate (500 \(\mu \)g) were equilibrated with streptavidin-agarose beads at 4°C. The beads were then washed five times in ice-cold solubilization buffer. Biotinylated proteins were released by incubation in Laemmli buffer and subjected to SDS-PAGE and immunoblotting.

SDS-PAGE and immunoblotting. Proteins were solubilized in sample buffer (2% SDS, 20% glycerol, 100 mM dithiothreitol, 50 mM Tris pH 6.8, 0.05% bromophenol blue) and separated by SDS-PAGE using 7.5% polyacrylamide gels. Proteins were then transferred from the polyacrylamide gel to a polyvinylidene difluoride (PVDF) membrane (Immobilon-P; Millipore, Bedford, MA) that was porous membrane (Immobilon-P; Millipore, Bedford, MA) that was used for immunoblotting. The PVDF membrane was incubated with blocking solution [5% nonfat dry milk and 0.1% Tween 20 in PBS, pH 7.4 or 5% albumin and 0.1% Tween 20 in Tris-buffered saline (TBS) buffer, pH 7.4, when probing with anti-pSer/Thr antibody] for 1 h at room temperature to block nonspecific binding, followed by overnight incubation at 4°C with the primary antibody in blocking solution. The membranes were then washed five times in blocking solution and incubated for 1 h with horseradish peroxidase-conjugated IgG secondary antibodies from Zymed Laboratories (1:2,000). Membranes were again washed with blocking solution and then rinsed with PBS or TBS. Bound antibody was detected with enhanced chemiluminescence (ECL) (GE Healthcare, Piscataway, NJ) according to manufacturer’s protocols. Multiple exposures of Kodak BioMax MR Film (Kodak, Rochester, NY) were made to ensure that signals were within the linear range of the film. The visualized bands were digitized with the ImageScanner (GE Healthcare) and quantified with Scion Image Software (Scion, Frederick, MD).

Statistics. All results are reported as means ± SE, with n indicating the number of observations. Comparisons between two groups were performed with unpaired t-tests. If more than two groups were compared, statistical significance was determined by ANOVA followed by Tukey’s post hoc test. A P value <0.05 was considered significant. The Graph Pad Prism 4 program (Graph Pad Software, San Diego, CA) was used to calculate significance.

RESULTS

Expression of glucagon-like peptide 1 receptor in LLC-PK₁ cells. Expression of mRNA encoding GLP-1R was examined by means of RT-PCR and DNA sequencing analyses. GLP-1R mRNA was expressed in LLC-PK₁ cells and rat renal cortex; rat pancreas cDNA was used as positive control. In contrast, GLP-1R message was not detected in the rat renal medulla (Fig. 1A).

The GLP-1R is a G protein-coupled receptor whose activation by ligands stimulates the formation of intracellular cAMP (10, 16, 17). As shown in Fig. 1B, LLC-PK₁ cell treatment with 1 nM exendin-4 for 30 min significantly increased the intracellular levels of cAMP. The GLP-1R antagonist exendin-9 (16, 43) alone did not alter intracellular cAMP production but...
completely inhibited the effect of exendin-4. No additive effect on cAMP levels was observed when LLC-PK1 cells were treated with a combination of GLP-1 and exendin-4 compared with cells treated with exendin-4 alone. These results strongly suggest that exendin-4 functionally interacts with its receptor in LLC-PK1 cells.

Modulation of NHE3 activity by exendin-4 in LLC-PK1 cells. To determine whether exendin-4 modulates NHE3 activity, we examined the effect of this peptide on Na+/H+-dependent pH recovery, in LLC-PK1 cells by using the NH4Cl pulse technique. Representative tracings of pH changes in LLC-PK1 cells treated with vehicle or exendin-4 are shown in Fig. 2, A and B, respectively. LLC-PK1 cells were acidified to a pH of ~6.4, and the rates of pH recovery were determined in the presence of external Na+/H+. As shown in Fig. 2C, the Na+/H+-dependent pH recovery rates were significantly slower in exendin-4-treated cells (0.34 ± 0.02 pH units/min) than in controls (0.53 ± 0.07 pH units/min). We also determined the H+ buffering power in LLC-PK1 cells treated or not with exendin-4 to rule out that the effect of this peptide on dph/dt was due to alterations in the intracellular intrinsic buffering capacity. The resulting estimates of βt at various values of pH were illustrated in Fig. 2D. Our data revealed no difference in βt between control and exendin-4-treated LLC-PK1 cells.

Because LLC-PK1 cells express both NHE1 and NHE3 isoforms, we next sought to examine whether the decreased Na+/H+-dependent pH recovery induced by exendin-4 was due to inhibition of NHE1 and/or NHE3 activity. For this purpose, experiments were performed with 10 μM HOE-694 and 10 μM S3226, to inhibit selectively NHE-1 and NHE-3 isoforms, respectively. As seen in Fig. 3, HOE-694 inhibited ~50% of total Na+/H+-dependent pH recovery in LLC-PK1 cells (0.24 ± 0.02 pH units/min). The HOE-694-insensitive rate of pH recovery could be reduced still more by exendin-4 (0.11 ± 0.01 pH units/min). Conversely, no difference was found...
between cells exposed to S3226 in the presence (0.26 ± 0.03 pH units/min) or absence (0.21 ± 0.02 pH units/min) of exendin-4, suggesting that the HOE-694-sensitive S3226-resistant NHE1 isoform is not modulated by exendin-4.

Together these findings provide strong evidence that exendin-4 decreases Na\(^{+}\)-dependent pHi recovery rates from cell acidification in LLC-PK\(_1\) cells by inhibiting NHE3-mediated Na\(^{+}/H^{+}\) exchange activity.

In all subsequent functional studies, 10 \(\mu\)M HOE-694 was used to inhibit NHE1.

Role of cAMP signaling pathway in regulation of NHE3 by exendin-4 in LLC-PK\(_1\) cells. As noted above, exposure of LLC-PK\(_1\) cells to 1 nM exendin-4 leads to significant increases in intracellular cAMP. We therefore examined whether the effect of exendin-4 on NHE3 in kidney proximal tubule cells depends on components of the cAMP signaling pathway. The data presented in Fig. 4 show that the membrane-permeant cAMP analog 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP; 100 \(\mu\)M) caused a decrement in the initial rates of Na\(^{+}\)-dependent pHi recovery very similar in magnitude to that caused by exendin-4 (0.12 ± 0.02 vs. 0.11 ± 0.02 pH units/min). Furthermore, the effects of exendin-4 and 8-BrcAMP were not additive (0.12 ± 0.03 pH units/min).

As intracellular cAMP accumulates and subsequently increases protein kinase A (PKA) activity, we further addressed the involvement of this kinase in the exendin-4-mediated NHE3 inhibition in LLC-PK\(_1\) cells. As summarized in Fig. 5, pretreatment with the PKA inhibitor H-89 (1 \(\mu\)M) had no intrinsic effects on pHi responses (0.28 ± 0.02 vs. 0.25 ± 0.02 pH units/min) but fully prevented the inhibitory effect of the PKA activator 6MB-cAMP (0.25 ± 0.03 vs. 0.13 ± 0.02 pH units/min). Alternatively, H-89 significantly but not completely blocked the inhibitory effect of exendin-4 on NHE3-mediated pHi recovery in LLC-PK\(_1\) cells (0.19 ± 0.01 vs. 0.11 ± 0.03 pH units/min; \(P < 0.01\)), strongly suggesting that an additional mechanism is involved in modulation of NHE3 by exendin-4.

Fig. 4. cAMP mediates exendin-4-induced NHE3 inhibition in LLC-PK\(_1\) cells. LLC-PK\(_1\) cells grown to confluence on glass coverslips were incubated with 1 nM exendin-4, 100 \(\mu\)M 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP), 1 nM exendin-4 + 100 \(\mu\)M 8-BrcAMP, or vehicle. The HOE-694-insensitive component of Na\(^{+}\)-dependent pHi recovery was measured in LLC-PK\(_1\) cells by the NH\(_4\)Cl pulse technique. Number of experiments is indicated in bars. \(*P < 0.001\) vs. Ctrl.

Fig. 5. Inhibitory effect of exendin-4 on NHE3 in LLC-PK\(_1\) cells is partially mediated by protein kinase A (PKA). Confluent LLC-PK\(_1\) cells were preincubated or not with the PKA inhibitor H-89 (1 \(\mu\)M) for 30 min before and during treatment with 1 nM exendin-4, 100 \(\mu\)M 8-BrcAMP, 50 \(\mu\)M PKA activator, or vehicle. The HOE-694-insensitive component of Na\(^{+}\)-dependent pHi recovery was measured in LLC-PK\(_1\) cells by the NH\(_4\)Cl pulse technique. Number of experiments is indicated in bars. \(*P < 0.001\) vs. Ctrl; \#P < 0.05 vs. Ctrl; †P < 0.01 vs. exendin-4.

Exchange protein directly activated by cAMP (EPAC) is a recently discovered cAMP sensor that mediates intracellular cAMP actions in addition to the classic PKA cascade (6). Data from the literature demonstrated that EPAC mediates the cAMP-dependent guanine nucleotide exchange that activates Rap-1 (6). Activation of Rap-1 stimulates the kinase activity of B-Raf and the phosphorylation of mitogen-activated protein kinases MEK1/2 that subsequently phosphorylates and activates ERK1/2 (26). Since there are no available EPAC antagonists, the contribution of this pathway to the exendin-4-induced NHE3 inhibition was examined by using a cAMP analog that specifically activates EPAC (8-pCPT-2'-O-Me-cAMP) and the compound U-0126, an inhibitor of its downstream effector MEK1/2 kinase. As depicted in Fig. 6A, EPAC stimulation decreased NHE3-dependent pHi recovery in LLC-PK\(_1\) cells (0.13 ± 0.01 pH units/min). Preincubation for 30 min with U-0126 (50 \(\mu\)M) had no intrinsic effects on pHi compared with control (0.26 ± 0.01 vs. 0.25 ± 0.02 pH units/min) but totally prevented the inhibitory effect of EPAC on NHE3 activity (0.25 ± 0.03 vs. 0.13 ± 0.01 pH units/min). In contrast, U-0126 curtailed but did not abolish the exendin-4 effect (0.20 ± 0.01 pH units/min). Since MEK1/2 may also be activated by PKA, we tested whether U-0126 would prevent the effect of PKA activation on NHE3 activity. A tendency to decrease the NHE3 inhibition generated by PKA was noted in the presence of U-0126, but it did not reach statistical significance (data not shown).

Further evidence implicating both PKA and EPAC pathways in mediating the exendin-4-induced inhibition of NHE3 is provided in Fig. 6B. The pretreatment of LLC-PK\(_1\) with both H-89 and U-0126 abolished the exendin-4 effect. Additionally, no synergistic effect on the reduction of NHE3 activity is observed when LLC-PK\(_1\) cells are treated simultaneously with exendin-4 and the cAMP analogs that selectively activate PKA or EPAC.
Collectively, these findings suggest that regulation of NHE3 activity in LLC-PK1 cells by the GLP-1R agonist exendin-4 occurs through both PKA- and EPAC-dependent mechanisms.

Molecular mechanisms underlying acute regulation of NHE3 by exendin-4. Several studies have shown that cAMP-dependent PKA phosphorylates COOH-terminal NHE3 (27, 31–33, 38, 53). We therefore examined whether PKA activation induced by exendin-4 led to increased NHE3 phosphorylation. To this end, LLC-PK1 cells were pretreated or not with the PKA inhibitor H-89 (50 μM) for 30 min before and during treatment with 1 nM exendin-4, 50 μM EPAC activator, or vehicle. Cells were solubilized, and the resulting supernatant was immunoprecipitated with an antibody directed to NHE3 (MAb 2B9). The levels of NHE3 phosphorylation were then analyzed by immunoblotting using an anti-pSer/Thr antibody (18). As shown in Fig. 7, exendin-4, 8-BrcAMP, and the PKA activator 6MB-cAMP induced a significant increase of NHE3 phosphorylation levels [123 ± 9% (n = 6), 160 ± 25% (n = 6), and 144 ± 23% (n = 3), respectively] compared with control. As expected, pretreatment with H-89 completely prevented increases of NHE3 phosphorylation induced by these agents.

Consistent with previous findings (27), Kocinsky and coworkers (31) recently reported that phosphorylation of NHE3 at PKA consensus sites precedes transport inhibition, suggesting that phosphorylation per se is not sufficient to inhibit NHE3 activity. The authors postulated that PKA phosphorylation may subsequently result in NHE3 inhibition by altering NHE3 subcellular trafficking and/or modulating the interaction with regulatory proteins (31). To investigate whether the effect of exendin-4 to reduce NHE3 activity is due to changes in NHE3 surface expression, we performed cell surface biotinylation. The biotinylated surface proteins were precipitated on strepta-

![Fig. 6. Exendin-4-induced NHE3 inhibition in LLC-PK1 cells occurs through both PKA- and EPAC-dependent mechanisms.](http://ajprenal.physiology.org/)

Collectively, these findings suggest that regulation of NHE3 activity in LLC-PK1 cells by the GLP-1R agonist exendin-4 occurs through both PKA- and EPAC-dependent mechanisms.

![Fig. 7. Exendin-4 increases phosphorylation of NHE3 in LLC-PK1 cells.](http://ajprenal.physiology.org/)
vidin followed by immunoblotting analysis of NHE3. As shown in Fig. 8, exendin-4 had no significant effect on NHE3 surface expression in LLC-PK₁ cells.

We next tested whether increases of NHE3 phosphorylation induced by exendin-4 would affect the stability of the NHE3-DPPIV complex. To this end, LLC-PK₁ cells incubated in the presence of exendin-4 or vehicle were solubilized and the resulting supernatant was immunoprecipitated with anti-DPPIV (MAb 1D11). The immune complexes were analyzed for the presence of NHE3 by immunoblotting. As seen in Fig. 9, exendin-4 treatment did not alter the amount of NHE3 in the DPPIV immune complex.

On the basis of these results, we conclude that acute treatment of LLC-PK₁ cells with exendin-4 increases NHE3 phosphorylation levels. The inhibitory effect of exendin-4 on NHE3 function is not associated with changes of NHE3 surface expression and occurs without affecting the assembly between NHE3 and DPPIV.

DISCUSSION

The potential role of GLP-1 and exendin-4 in modulating salt and water homeostasis has recently been reported in a series of elegant studies (19, 20, 22, 35, 39, 51). However, the assumption that GLP-1 reduces renal sodium reabsorption by affecting NHE3 activity is mainly based on indirect evidence. In the present study we demonstrate for the first time that the GLP-1R agonist exendin-4 inhibits NHE3-mediated Na⁺/H⁺ exchange in renal proximal tubule cells. Additionally, our data suggest that binding of exendin-4 to GLP-1R in LLC-PK₁ cells endogenously activates two cAMP downstream effectors, PKA and EPAC.

The role of EPAC in regulation of NHE3 activity has been recently shown by Honegger and colleagues (24). However, the mechanism by which EPAC activation leads to NHE3 inhibition is still elusive. Here we demonstrate that LLC-PK₁ cell pretreatment with the MEK1/2 inhibitor U-0126 abolished the effect of the EPAC activator and diminished the exendin-4-induced NHE3 inhibition. Unexpectedly, neither exendin-4 nor EPAC activation changed the phosphorylation status of the MEK1/2 substrate ERK1/2 in LLC-PK₁ cells (data not shown). One possible way to reconcile these findings is by postulating that the effect of EPAC on NHE3 involves phosphorylation of a still unidentified protein by MEK1/2.

Biochemical and physiology studies have established the important role of PKA phosphorylation in regulating NHE3 activity (27, 31–33, 38, 53). Nonetheless, there is evidence from both in vitro (27) and in vivo (31) studies that phosphorylation per se is insufficient to inhibit NHE3. In the present report, we found that exendin-4 increases NHE3 phosphorylation without affecting NHE3 surface expression or its association with DPPIV. The subsequent events that lead to NHE3 inhibition may involve the association of NHE3 with other binding partners or yet unidentified mechanisms.
Our earlier studies demonstrated that NHE3 and DPPIV reside together in multimeric complexes in the renal brush-border membrane (13) and that specific competitive inhibitors that bind to the active site of DPPIV significantly reduce NHE3-mediated NaHCO3 reabsorption in the rat renal proximal tubule (14). On the basis of our present and previous observations, we propose the following model to explain the role of GLP-1 in mediating the functional interaction between NHE3 and DPPIV in the intact proximal tubule in vivo. Inhibition of DPPIV activity by specific competitive inhibitors increases the levels of GLP-1 in the bloodstream and consequently in the glomerular ultrafiltrate. In the renal proximal tubule, GLP-1 binds to its receptor GLP-1R, increasing the intracellular levels of cAMP, leading in turn, to cAMP-dependent activation of the PKA and EPAC pathways. Subsequent inhibition of NHE3-mediated Na+/H+ exchange in proximal tubule decreases sodium, bicarbonate, and water reabsorption. This hypothetical model is consistent with human studies in which GLP-1 infusions enhanced urinary sodium excretion and decreased proton secretion in healthy volunteers and in patients with type 2 diabetes (20).

The association of NHE3 with DPPIV, and the fact that this peptidase processes the peptide GLP-1 that is involved in regulation of the transporter, raises the possibility that NHE3, DPPIV, and the GLP-1R are linked together to form a functional unit. Of note, Herrera and coworkers (21) have reported that DPPIV interacts with the chemokine receptor CXC4 in lymphocytes, in which the DPPIV-CXC4 complex seems to play a role in immune system function and the pathophysiology of human immunodeficiency virus (HIV) infection. Binding of the CXC4 ligand stromal cell-derived factor 1 to its receptor results in cointernalization of CXC4 and DPPIV. SDF-1α is a substrate of DPPIV, and when this peptidase is expressed on the cell surface SDF-1α is cleaved and inactivated (39). The association between DPPIV and CXC4 illustrates a regulatory mechanism that implicates both catalytic and binding properties of DPPIV. By analogy, it is possible that NHE3, DPPIV, and the GLP-1R physically and functionally interact in the renal brush-border membrane to regulate salt and water homeostasis. Unfortunately, we were unable to investigate whether a physical interaction between these proteins exists in LLC-PK1 because specific GLP-1R antibodies suitable for immunoprecipitation and/or immunoblotting in LLC-PK1 cells are not available.

In summary, we have found that the GLP-1R agonist exendin-4 reduces NHE3 activity in renal proximal tubule cells. This effect is mediated via PKA and EPAC signaling pathways and is associated with increased levels of NHE3 phosphorylation. The inhibition of DPPIV may enhance the renal effects of GLP-1, and might explain why DPPIV inhibitors decrease NHE3-mediated NaHCO3 reabsorption in the rat renal proximal tubule.

REFERENCES

DISCLOSURES

No conflicts of interest are declared by the authors.