OCRL1 function in renal epithelial membrane traffic

Shanshan Cui,1* Christopher J. Guerriero,1* Christina M. Szalinski,1 Carol L. Kinlough,1 Rebecca P. Hughey,1,2 and Ora A. Weisz1,2

1Renal Electrolyte Division and 2Department of Cell Biology and Physiology, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania

Submitted 5 August 2009; accepted in final form 23 November 2009

Lowe syndrome is an X-linked disorder characterized by congenital cataracts, mental retardation, and renal malfunction that results from mutations in the gene encoding oculocerebrorenal syndrome of Lowe (OCRL1) (7). OCRL1 is a lipid phosphatase that hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2). Most patients with Lowe syndrome develop proteinuria very early in life. PIP2 dynamics are known to modulate numerous steps in membrane trafficking, and it has been proposed that OCRL1 activity regulates the biogenesis or trafficking of the multiligand receptor megalin. To examine this possibility, we investigated the effects of siRNA-mediated OCRL1 knockdown on biosynthetic and postendocytic membrane traffic in canine and human renal epithelial cells. Cells depleted of OCRL1 did not have significantly elevated levels of cellular PIP2 but displayed an increase in actin comets, as previously observed in cultured cells derived from Lowe patients. Using assays to independently quantitate the endocytic trafficking of megalin and of megalin ligands, we could observe no defect in the trafficking or function of megalin upon OCRL1 knockdown. Moreover, apical delivery of a newly synthesized marker protein was unaffected. OCRL1 knockdown did result in a significant increase in secretion of the lysosomal hydrolase cathepsin D, consistent with a role for OCRL1 in membrane trafficking between the trans-Golgi network and endosomes. Together, our studies suggest that OCRL1 does not directly modulate endocytosis or postendocytic membrane traffic and that the renal manifestations observed in Lowe syndrome patients are downstream consequences of the loss of OCRL1 function.

proximal tubule; Lowe syndrome; phosphatidylinositol; megalin; CLC-5; endocytosis; cathepsin D

*L. Cui and C. J. Guerriero contributed equally to this work.

Address for reprint requests and other correspondence: O. A. Weisz, Renal Electrolyte Div., 978.1 Scaife Hall, 3550 Terrace St., Pittsburgh, PA 15261 (e-mail: weisz@pitt.edu).

http://www.ajprenal.org 0363-6127/10 $8.00 © 2010 American Physiological Society F335
phatases can compensate for loss of OCRL1 function in some cells. Interestingly, knockout of the OCRL1 gene in mice does not recapitulate Lowe syndrome, as the mice do not develop cataracts or renal Fanconi syndrome (27). Expression of the homologous 75-kDa inositol polyphosphate-5-phosphatase INPP5B in mice has been suggested to compensate for loss of OCRL1 function, as INPP5B is expressed at considerably higher levels in mice compared with humans. In support of this idea, knockout of INPP5B in mice had no discernible renal phenotype; however, a cross between OCRL1 and INPP5B knockout mice did not produce any viable double-knockout mice (27). However, in contrast to OCRL1, INPP5B is largely localized to the early biosynthetic pathway, although it is also present on some early endocytic compartments. INPP5B does bind to APPL1 in vitro but, unlike OCRL1, it does not interact with clathrin or α-adaptin (16, 54). Moreover, a recent study argues that OCRL1 and INPP5B do not access the same pools of PIP2, as expression of INPP5B does not rescue membrane ruffling in OCRL1-deficient fibroblasts (12).

In the absence of an animal model, we used siRNA-mediated knockdown in human (HK-2) and canine (MDCK) renal epithelial cells to model the disease and examine the consequent effects on the trafficking of megalin and other proteins. MDCK cells establish well-differentiated monolayers and provide a good model in which to investigate apical biosynthetic and endocytic traffic; however, they also express significant levels of INPP5B, which could complicate dissection of the cellular role of OCRL1. The human proximal tubule cell line HK-2 is less well-differentiated but expresses no INPP5B. We find that knockdown of OCRL1 in either cell line recapitulates key features of cells cultured from Lowe Syndrome cells, including a trend toward increased cellular PIP2 and alterations in cytoskeletal dynamics. We found no effect of depleting OCRL1 on either biosynthetic or endocytic membrane traffic. However, we did observe increased lysosomal hydrolase secretion in OCRL1-deficient cells, consistent with a role for this enzyme in post-Golgi delivery to lysosomes (46, 47).

MATERIALS AND METHODS

DNA constructs and adenoviruses. The megalin minireceptor consisting of the ligand binding domain 4, transmembrane domain, and cytoplasmic tail of megalin (M4 in Ref. 45) was kindly provided by Dr. M. Farquhar and modified by adding an extracellular V5 epitope tag and cytoplasmic GFP. The construct was subcloned into the PDAdet adenoviral expression vector and replication-deficient adenovirus (AV) was prepared. Generation of the AVs encoding OCRL1, PI5KI, influenza hemagglutinin (HA), and rabbit polymeric immunoglobulin receptor (pIgR) was described previously (18, 22). The viral genome lacks an intact envelope, is constructed entirely of single-nucleotide mismatches at the 3′ end of the sense sequence that enhances the efficiency of target mRNA degradation (17). This siRNA efficiently knocks down OCRL1 in both HK-2 and MDCK cells. SiRNA targeting canine N-WASP (GGGGAGACCCCCCAAATGC) that efficiently knocks down OCRL1 was kindly provided by A. Ungeheuer. There is an intact envelope, and a single-nucleotide mismatch at the 3′ end of the sense sequence that enhances the efficiency of target mRNA degradation (17). This siRNA efficiently knocks down OCRL1 in both HK-2 and MDCK cells. SiRNA targeting canine N-WASP (GGGGAGACCCCCCAAATGC) was based on a published siRNA targeting rat N-WASP (28). SiRNA directed against firefly luciferase was used as a control. SiRNAs were introduced into MDCK and HK-2 cells using nucleofection as follows: cells cultured in growth media in 10-cm dishes were maintained at a density of 50–60% and were used for knockdown experiments. Cells were trypsinized from the dishes, counted using a hemocytometer, pelleted by centrifugation, and resuspended in Ingenio electroporation solution (Mirus; 4 million cells/100 μl solution). Suspended cells were mixed with control or OCRL1-specific siRNA (10 μg of siRNA per 4 million cells), transferred into Ingenio cuvettes (0.2-cm gap, Mirus; 100 μl cell suspension/cuvette), and electroporated in an Amaza nucleofector (Lonza) using the program T20. After nucleofection, cells were immediately plated and cultured in growth medium for 3 days before use. Knockdown of OCRL1 was confirmed for all experiments by Western blotting or by RT-PCR. Knockdown efficiency was typically >95% in MDCK cells and ~80% in HK-2 cells.

Determination of knockdown efficiency using RT-PCR. The Ambion RNeasy phenol-free total RNA isolation kit was used to extract RNA from HK-2 and HeLa cell lysates, and RNA concentration was determined after DNase treatment using absorbance at 260 nm. Reactions containing 1 μg of RNA, 2 μl of Oligo(dT) primer (50 μM stock) and nuclease-free water in a total volume of 12 μl were mixed gently, spun briefly, heated for 3 min at 72°C, and set immediately on ice. Two microliters of 10× RT buffer, 4 μl dNTP mix, 1 μl of RNAse inhibitor, and 1 μl moloney murine leukemia virus reverse transcribease (or water, for control samples) were added. The solution was then mixed gently and incubated at 42°C for 1 h, followed by incubation at 92°C for 10 min to inactivate the RT enzyme. A 3-μl aliquot of this reaction was mixed with 2.5 μl each of sense and antisense primers (1 μg/ml, 5 μl of 10× PCR buffer, 0.5 μl of enzyme mix (GeneAmp High Fidelity PCR System, Applied Biosystems), 5 μl of DMSO, and 26.5 μl of PCR-grade water. The solution was pipetted into a 0.6-ml thin walled tube and placed into a Bio-Rad thermocycler. After a 1-min incubation at 95°C, the reaction was cycled 35 times at 95°C for 30 s, 52°C for 30 s, and 72°C for 30 s. Reactions were then incubated for a final 5 min at 72°C and held at 4°C. Five microliters of this reaction were loaded on a 2% agarose gel and product sizes were measured using a Track-It ladder (Invitrogen). The sense and anti-sense PCR primer sequences used were CAGATGTGAGCCACCACGC for hu-

...
with HEPES-buffered MEM containing [125I]lactoferrin ([125I]Lf; was iodinated to a specific activity of 1,500–2,000 cpm/ng using the background. After the incubation, the medium was collected and medium, pulsed with [35S]methionine (Easy Tag Express protein labeling described in Ref. 6. Opti-MEM I reduced serum medium (Invitrogen) containing [125I]Lf treated with control or OCRL1 siRNA were incubated in GIBCO with AV-HA, and where indicated, with control AV or not treated with control siRNA or siRNA directed against OCRL1 or N-WASP as noted) were seeded onto Transwell filters for 3 days. Cells were then infected with AV-HA, and where indicated, with control AV or AV-P5K1I. The following day, cells were starved in methionine-free medium, pulsed with [35S]methionine (Easy Tag Express protein labeling mix; Perkin-Elmer), and chased for 2 h. Apical delivery was measured using a cell surface trypsinization assay as described in Ref. 22. [125I]lactoferrin binding to MDCK cells. Human lactoferrin (Sigma) was iodinated to a specific activity of 1,500–2,000 cpm/ng using the ICI method. Filter-grown MDCK cells were incubated for 1 h on ice with HEPES-buffered MEM containing [125I]lactoferrin ([125I]Lf; ~1,200,000 cpm/well). For competition experiments, >100-fold surplus cold lactoferrin or BSA (negative control, Sigma) was included. After the incubation, cells were washed thoroughly with ice-cold medium, solubilized, and cell-associated radioactivity was quantitated using a γ-counter (Packard). [125I]Lf degradation and recycling in MDCK or HK-2 cells. Filter-grown MDCK cells (infected with AV-mini-megalin) or HK-2 cells on plastic were incubated on ice for 1 h with medium containing [125I]Lf (~1,200,000 cpm/well; added apically to MDCK cells). Cells were washed thoroughly with ice-cold medium and then warmed up to 37°C to allow ligand uptake for various time periods. At each time point, the medium was collected. The cells were harvested after the final time point and solubilized. Tricholoroacetic acid (TCA) was added to the medium at a final concentration of 10% and the samples were incubated for 20 min on ice. After centrifugation, TCA-soluble and -insoluble [125I] was quantitated using a γ-counter, and degraded/recycled lactoferrin was determined (TCA-soluble/insoluble [125I] cpm divided by the total [125I] cpm recovered in the cells and medium). [125I]Lf degradation in HK-2 cells. Nonpolarized HK-2 cells treated with control or OCRL1 siRNA were incubated in GIBCO Opti-MEM I reduced medium (Invitrogen) containing [125I]Lf (~200,000 cpm/well) in a 37°C incubator overnight (14–18 h). Blank wells containing [125I]Lf in medium (no cells) were incubated under the same conditions to determine nonspecific [125I]Lf degradation (background). After the incubation, the medium was collected and TCA was precipitated as described above. Cells were solubilized and subjected to the Dc protein assay (Bio-Rad). The amount of [125I]Lf degraded in each sample was calculated as TCA-soluble counts above background normalized to total protein levels.

Endocytosis of mini-megalin. Endocytosis of mini-megalin was assessed using a biotinylation-based assay performed using the protocol previously described for MUC1 (2). Briefly, HK-2 cells infected with AV-mini-megalin (and either coinfected with AV-P5K1I or control AV, or treated with OCRL1 or control siRNA) were biotinylated on ice using sulfo-NHS-SS-biotin (Pierce). Cells were then rapidly warmed to 37°C for 0 or 6 min (one of the experiments comparing control and P5K1I AVs was warmed for only 5 min). Biotin on the cell surface was stripped with 2-mercaptoethane sulfonate (MESNa) before cells were solubilized in a HEPES-buffered detergent solution (60 mM octyl-β-D-glucopyranoside, 50 mM NaCl, 10 mM HEPES, 0.1% SDS, pH 7.4). Duplicate 0’ samples were left unstripped to quantitate total biotinylated mini-megalin at the cell surface. Biotinylated proteins were recovered after immunoprecipitation with avidin-conjugated beads and analyzed by Western blotting (to detect the V5 tag on mini-megalin) after SDS-PAGE. The percent of mini-megalin endocytosis at each time point was calculated as the percent of total biotinylated signal remaining at 6 min minus the percent remaining at 0' (background).

Endocytosis of [125I]IgA. Iodination of IgA was performed essentially as described in Ref. 5. HK-2 cells nucleofected with control or OCRL1 siRNA were plated in 12-well dishes and incubated with AV-pIgR after 2 days. The following day, cells were incubated with [125I]IgA for 1 h on ice and then washed extensively with ice-cold medium to remove unbound radioligand. The cells were then incubated in prewarmed medium in a 37°C waterbath for 0, 2.5, or 5 min and then rapidly chilled. To remove [125I]IgA from the cell surface, cells were incubated for 30 min on ice with 100 μg/ml 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and 0.4% deoxycholate, 62.5 mM EDTA, pH 7.4, and cell-associated radioactivity was determined using a gamma counter. Internalized [125I]IgA was quantitated relative to total [125I]IgA (recovered in the cells, trypsin and glycine strips, and the medium).

Quantitation of cathepsin D secretion. HK-2 cells were cultured for 3 days after nucleofection with either control or OCRL1 siRNA. Cells were then pulse labeled with [35S]methionine and chased for 4 h. NH4Cl (10 mM) was included in some samples as a positive control. Following the chase, both the cells and the media were harvested and immunoprecipitated using an anti-cathepsin D antibody (Upstate). Radioactive cathepsin D secreted into the medium during the chase was quantitated following separation by SDS-PAGE.

RESULTS

Characterization of OCRL1 knockdown in human and canine kidney cells. To examine the consequences of disrupting OCRL1 function in renal epithelial cells, we optimized approaches to knockdown the protein using siRNA. We previously showed that biosynthetic delivery in polarized MDCK cells is sensitive to overexpression of wild-type OCRL1 (18). However, because canine cells, like mice, might express a redundant inositol polyphosphate 5′-phosphatase that could compensate for loss of OCRL1, we also developed methods to knockdown OCRL1 in human renal proximal tubule HK-2 cells. Endogenous OCRL1 localized largely to the Golgi complex in both of these cell lines (Fig. 1A and data not shown). Other groups previously reported that a small subpopulation of OCRL1 also localizes to endosomes and the cell surface (8, 16, 46). Introduction of siRNA oligonucleotides by electroporation resulted in efficient reduction in OCRL1 levels in both cell lines, as measured by Western blotting (Fig. 1B) or using a PCR-based assay (performed using HK-2 cells only; Fig. 1C). Importantly, we could detect no endogenous expression of INPP5B message in either HK-2 or HeLa cells, although our primers efficiently amplified a heterologously expressed human INPP5B cDNA construct when expressed in HeLa cells (Fig. 1D). Thus, any functions of OCRL1 that are disrupted upon knockdown of this enzyme are unlikely to be restored by

(you can view the full PDF at http://ajprenal.physiology.org/ by 10.220.33.2 on August 12, 2017)
compensatory expression of INPP5B in these cells. However, MDCK cells do express significant levels of INPP5B (Fig. 1D).

Kidney proximal tubule cell lines derived from Lowe syndrome patients have been reported to have elevated levels of PIP2 compared with normal human kidney cells (55); however, no other studies reported changes in cellular PIP2 in OCRL1-deficient cells. This is consistent with the fact that most of the cellular PIP2 is present at the plasma membrane, whereas OCRL1 is largely excluded from this site. We compared cellular PIP2 extracted from control and OCRL1 knockdown cells after radiolabeling with 32P for 4 h. We reproducibly observed a tendency toward increased cellular PIP2 in MDCK cells treated with siRNA directed against OCRL1, although this was not statistically significant by Student’s paired t-test (Fig. 2A). To determine whether this trend is physiologically relevant, we tested whether knockdown of OCRL1 alters the percentage of cells producing actin comets. Fibroblasts from Lowe patients have previously been demonstrated to have dramatically increased numbers of comets, presumably due to enhanced PIP2-dependent activation of N-WASP-Arp2/3-mediated polymerization of these branched actin structures (1). To quantitate actin comet occurrence, control vs. OCRL1 knockdown MDCK cells stably expressing GFP-actin were observed by spinning disc confocal microscopy. Individual fields were imaged over a 3-min period and the number of cells with detectable actin comets was quantitated. Knockdown of OCRL1 resulted in a dramatic increase in the percentage of cells with detectable actin comets over this period, confirming that OCRL1 normally regulates a pool of PIP2 involved in cytoskeletal dynamics in these cells (Fig. 2B). Moreover, this pool is apparently not accessible to the INPP5B expressed in MDCKs. This is consistent with recent results demonstrating that expression of INPP5B does not rescue the enhanced membrane ruffling observed in OCRL1-deficient fibroblasts (12).

Effects of OCRL1 knockdown on biosynthetic delivery kinetics. We showed previously that elevation of cellular PIP2 upon overexpression of P15Kιβ in polarized MDCK cells stimulates a post-Golgi step in biosynthetic delivery of the apical marker influenza HA via a mechanism dependent on actin comets (18). In contrast, heterologous expression of OCRL1 or dominant negative inhibitors of Arp2/3 activation inhibited HA delivery. Moreover, HA could be detected at the tips of actin comet-like structures in fixed cells. Because both P15Kιβ overexpression and OCRL1 knockdown cause an increase in actin comets, we hypothesized that HA delivery kinetics might be stimulated upon depletion of OCRL1 by siRNA. However, we found no effect of OCRL1 knockdown on HA delivery kinetics in either MDCK or HK-2 cells (Fig. 3, A and B). In contrast, knockdown of N-WASP resulted in significant inhibition of HA delivery in MDCK cells, whereas overexpression of P15Kιβ stimulated HA delivery kinetics as expected (Fig. 3A). P15Kιβ overexpression has a greater effect on cellular PIP2 levels compared with OCRL1 knockdown [210% of control for P15Kιβ (C. J. Guerriero, unpublished results)], and it is possible that a threshold increase in PIP2 is required to stimulate HA delivery.

Effect of OCRL1 knockdown on low-molecular-weight protein uptake and megalin internalization kinetics. We next examined whether knockdown of OCRL1 disrupts megalin-dependent uptake of low-molecular-weight proteins (LMWPs).
Patients with Dent disease caused by defective CLC-5 activity have virtually identical urinary proteomes to OCRL1 patients, and dramatically decreased uptake of megalin ligands has been observed in proximal tubule cultures from CLC-5 knockout mice (11). Moreover, megalin expression is reduced in proximal tubules from CLC-5 knockout mice (11) as well as in the renal tubular epithelium of some Dent disease patients (42). However, whether loss of CLC-5 function affects the kinetics or fidelity of megalin trafficking is unknown.

MDCK cells do not express endogenous megalin (45), although they do express LRP, a basolaterally recycling member of the LDL receptor family closely related to megalin. Additionally, these cells express both ARH and Dab-2, adaptor proteins thought to play a role in endocytosis of megalin in the proximal tubule. HK-2 cells express ARH, but not Dab-2 (Fig. 4A). The ARH doublet observed in MDCK cells has been previously observed in some other cell types (35). We infected polarized MDCK cells with recombinant AV expressing a GFP- and V5-tagged truncated megalin receptor (AV-mini-megalin). Fluorescence imaging in nonpermeabilized cells to selectively label the surface-exposed V5 tag in addition to the total pool of GFP-tagged mini-megalin confirmed that this protein was efficiently trafficked to the apical membrane (Fig. 4B). We next examined the domain-selective binding of \[^{125}\text{I}]\text{Lf, a ligand that binds to mini-megalin, in control vs. mini-megalin expressing MDCK cells. MDCK cells grown on Transwell filters were incubated with apically or basolaterally added ligand on ice and then quickly washed several times with ice-cold medium. The filters were removed from their supports and cell surface radioactivity was quantitated using a gamma counter. Apical binding to cells infected with AV-mini-megalin was significantly higher than control...
cells, confirming that apical $[^{125}\text{I}]\text{Lf}$ binding is quantitatively mediated by mini-megalin (Fig. 4C).

We then monitored the postendocytic fate of $[^{125}\text{I}]\text{Lf}$ internalized apically from control and OCRL1 knockdown MDCK cells infected with AV-mini-megalin. As shown in Fig. 4, D and E, we observed no difference in the kinetics of recycling or degradation of this ligand in cells lacking OCRL1 compared with control cells. Moreover, OCRL1 knockdown had no effect on the kinetics of $[^{125}\text{I}]\text{Lf}$ recycling or degradation mediated by endogenous megalin in HK-2 cells (Fig. 4, F and G).

Because the effect of OCRL1 on megalin-mediated handling of $[^{125}\text{I}]\text{Lf}$ could be too subtle to detect in a single round of endocytosis, we also examined cumulative degradation of ligand over a prolonged incubation period (Table 1). HK-2 cells nucleofected with control or OCRL1 siRNA were incubated overnight with $[^{125}\text{I}]\text{Lf}$ and release of TCA-soluble counts was quantitated. No effect of OCRL1 knockdown on the amount of $[^{125}\text{I}]\text{Lf}$ degraded was observed using this integrated approach. Together, our studies suggest that uptake and degradation of megalin ligands are unaffected by loss of OCRL1 function in human and canine kidney cells.

A recent study found a small pool of OCRL1 associated with the adaptor APPL1 in clathrin-coated pits (16). Because APPL1 also associates through megalin via the adaptor GIPC, it was suggested that OCRL1 may play a role in endocytosis of a megalin-containing complex. We therefore directly examined the effect of OCRL1 knockdown on the initial rate of megalin internalization using a biotinylation/stripping approach. HK-2...
cells treated with control or OCRL1 siRNA and infected with AV-mini-megalin were biotinylated using sulfo-NHS-SS-biotin on ice and then warmed to 37°C for 0 or 6 min. At each time point, samples were rapidly chilled, and remaining surface biotin was stripped with the membrane-impermeant reducing agent MESNa. Duplicate biotinylated samples were not warmed and left unstripped to measure the total amount of biotinylated megalin at the start of the time course. Cells were solubilized and biotinylated megalin was recovered and analyzed by Western blotting. As a control, we also examined the effect of PI5KI overexpression on megalin endocytosis kinetics. We previously demonstrated that overexpression of this enzyme stimulates endocytosis of other apical proteins, presumably by increasing surface levels of PIP2 (53). As shown in Fig. 5A, knockdown of OCRL1 had no effect on megalin internalization. In contrast, megalin endocytosis was enhanced upon overexpression of PI5KI. Moreover, OCRL1 knockdown had no effect on the internalization kinetics of [125I]IgA internalization mediated by a different surface receptor (the plgR) expressed using AV in either HK-2 (Fig. 5B) or MDCK cells (C. M. Szalinski, unpublished results). Like megalin, plgR endocytosis is clathrin-mediated, but plgR does not contain ARH/Dab-2 binding motifs. Together, these data suggest that OCRL1 is not directly involved in internalization or postendocytic trafficking of megalin and its ligands, or of other membrane receptors.

Lyosomal hydrolase delivery in OCRL1 knockdown cells. Previous studies demonstrated that OCRL1 knockdown in HeLa cells resulted in partial redistribution of the cation-independent mannose 6-phosphate receptor from the TGN to endosomal structures. Moreover, OCRL1 patients are reported to have increased levels of lysosomal hydrolases in their serum (47). To determine whether depletion of OCRL1 affects delivery of lysosomal hydrolases in renal epithelial cells, we quantitated cathepsin D secretion in HK-2 cells treated with control or OCRL1 siRNA. Cells were radiolabeled for 2 h and returned to culture in serum-free medium. Media were collected after a 4-h chase and released cathepsin D, recovered after immunoprecipitation and SDS-PAGE, was quantitated using a phosphorimager. As shown in Fig. 6, knockdown of OCRL1 in HK-2 cells consistently resulted in a roughly 20% increase in cathepsin D secretion. This increase is comparable to that observed on incubation of HK-2 cells with ammonium chloride, which inhibits lysosomal delivery of newly synthesized soluble hydrolases (Fig. 6).

DISCUSSION

We optimized conditions to efficiently knockdown OCRL1 in both human (HK-2) and canine (MDCK) renal epithelial cells and measured the consequences on cellular PIP2, actin comet frequency, and biosynthetic and postendocytic delivery. Depletion of OCRL1 did not have a significant effect on cellular PIP2 levels but increased actin comet formation. However, we did not detect any effects of OCRL1 knockdown on the kinetics of apical biosynthetic delivery of HA or on megalin endocytosis, two trafficking steps that are stimulated when cellular PIP2 is increased by overexpression of PI5KI. In contrast, we observed a significant increase in the secretion of the lysosomal enzyme cathepsin D in cells lacking OCRL1, consistent with previous observations that plasma lysosomal hydrolase delivery in OCRL1 knockdown cells does not affect lactoferrin degradation.

Table 1. OCRL1 knockdown in HK-2 cells does not affect lactoferrin degradation

<table>
<thead>
<tr>
<th>Exp.</th>
<th>Control siRNA, cpm</th>
<th>OCRL1 siRNA, cpm</th>
<th>OCRL1 KD/Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44,137 ± 4,035</td>
<td>35,952 ± 9,995</td>
<td>0.81</td>
</tr>
<tr>
<td>2</td>
<td>31,216 ± 8,761</td>
<td>40,648 ± 5,172</td>
<td>1.30</td>
</tr>
<tr>
<td>3</td>
<td>5,246 ± 2,261</td>
<td>4,747 ± 1,704</td>
<td>0.91</td>
</tr>
<tr>
<td>4</td>
<td>3,085 ± 116</td>
<td>4,577 ± 1,259</td>
<td>1.48</td>
</tr>
</tbody>
</table>

Average: N/A

Values are means ± SE. HK-2 cells treated with control or OCRL1 siRNA were incubated overnight with [125I]Lf and TCA-soluble counts were recovered to quantitate cumulative [125I]Lf degradation. Results from 4 independent experiments are shown. Experiments 1 and 2 were performed using a different batch of [125I]Lf compared with 3 and 4.
enzymes are elevated in Lowe syndrome patients and with a role for OCRL1 in TGN-endosome trafficking (8, 47). Together, our data suggest that a defect in this step in membrane traffic represents the primary manifestation of cells lacking OCRL1. Below, we discuss the implications of our findings with respect to the pathogenesis of Lowe syndrome.

Phenotype of OCRL1-depleted cells. Knockdown of OCRL1 using nucleofection was efficient (80–95%) as monitored using both Western blotting and PCR. We were able to amplify PI5KI \textsubscript{H9252} expression, inhibition of Arp2/3 activation (18), and N-WASP knockdown (Fig. 3) would argue against this idea. Finally, actin comets stimulated by OCRL1 knockdown may emanate from sites distinct from those evoked on PI5KI \textsubscript{H9252} overexpression and may not propel apically destined carriers.

Although we were unable to assess the effect of OCRL1 knockdown on megalin biosynthetic traffic, we believe it unlikely that this pathway is affected by OCRL1 depletion. Like HA, a fraction of megalin has been reported to reside in glycolipid-enriched microdomains, or lipid rafts (32), although it is not known whether the two take a similar biosynthetic route to the apical membrane. The stimulation in apical delivery we might predict in OCRL1-depleted cells (but did not observe for HA) would be expected to increase surface megalin levels and is intuitively inconsistent with a trafficking defect that would result in proteinuria. Importantly, we did not find any significant difference in the steady-state level of minimegalin at the cell surface of control vs. OCRL1-depleted cells as assessed by Western blotting (data not shown).

OCRL1 knockdown does not disrupt megalin trafficking. OCRL1 knockdown did not affect megalin endocytosis as measured by either a biotinylated assay to detect receptor internalization or by following the fate of the radioiodinated ligand \([^{125}I]\)Lf. The latter assay was performed using two model systems: polarized MDCK cells expressing a minimegalin receptor and human proximal tubule cells that express endogenous megalin. Moreover, we found no effects of OCRL1 knockdown on ligand degradation when we monitored multiple rounds of uptake over a 14- to 18-h period. In contrast, we found that overexpression of PI5KI \textsubscript{H9252} stimulated the rate of megalin endocytosis. Together, these results suggest the strong possibility that OCRL1 does not directly regulate megalin traffic or function along the endocytic pathway. Recent studies demonstrated that OCRL1 binds directly to clathrin heavy chain and observed a small fraction of cellular OCRL1 in association with clathrin-coated vesicles (8, 9, 16, 46). Our studies suggest that the pool of protein associated with the cell surface and very early endocytic vesicles may not have a direct role in modulating endocytosis.

On the one hand, our observations are consistent with the prediction that increased cellular \(\Pi P_2\) levels do not alter megalin traffic in a manner that would be expected to compromise LMWP uptake. On the other hand, the lack of effect of OCRL1 depletion on megalin traffic is somewhat surprising given that effects on endocytosis of fluid phase markers and megalin ligands have been reported in two CLC-5 knockout mouse models of Dent disease (11, 40, 51). A significant fraction of patients diagnosed with Dent disease have recently been shown to have mutations in OCRL1 rather than in CLC-5 (24), suggesting that the two proteins provide critical functions along the same pathway. There is a decrease in both the overall level and the apical concentration of megalin and cubulin in the proximal tubule of mouse CLC-5 knockouts that leads to a profound decrease in the endocytosis of megalin/cubulin ligands (11, 51, 52). This effect is not universal, as no defect in
apical endocytosis or megalin function is observed in the thyroid of CLC-5 knockout mice (31, 49). It is not yet clear how loss of CLC-5 leads to the observed decrease in megalin expression and the consequent low-molecular-weight proteinuria characteristic of Dent disease patients (13, 19). Changes in megalin localization have not been observed in renal biopsies from human patients (34), although both Dent disease and Lowe syndrome patients shed significantly decreased levels of megalin into the urine (37). CLC-5 is largely localized to endocytic compartments and endosome acidification in proximal tubule cells cultured from CLC-5-deficient mice is reported to be defective (20). A small fraction of CLC-5 also localizes to the cell surface and it has also been suggested that CLC-5 plays an important role in endocytosis at the plasma membrane (25). Importantly, while there is a clear inhibition in the accumulation of ligands and fluid phase markers in proximal tubule cells from CLC-5 knockout vs. control mice (40, 52), it is not known whether the rate of endocytosis is affected. By analogy with our studies in OCRL1-depleted cells, we predict that no change would be observed in endocytosis kinetics in renal epithelial cells. Unfortunately, we could not address this directly, as we were unable, using multiple approaches, to knockdown CLC-5 in any of our renal epithelial cell lines.

OCRL1 knockdown enhances lysosomal enzyme secretion. Knockdown of OCRL1 perturbed lysosomal delivery of newly synthesized cathepsin D. This result is consistent with studies by Choudhury et al. (8) demonstrating a partial shift in the steady-state distribution of the cation-independent mannose 6-phosphate receptor from the TGN to endosomes in cells transfected with OCRL1 siRNA, as well as with the previous observation that Lowe syndrome patients have elevated serum levels of lysosomal hydrolases (47). This finding is also consistent with the primarily TGN/endosomal distribution of OCRL1.

How OCRL1 function regulates the sorting of lysosomal hydrolases is still unknown. OCRL1 interacts with numerous components of the machinery known to be involved in this process, including clathrin and several members of the rab GTPase family; however, there is no evidence that interaction with OCRL1 modulates the function of these proteins (8, 26). A more tractable possibility that has been suggested is that modulation of Golgi or endosomal PIP2 levels by OCRL1 is important for the recruitment of adaptor proteins required for TGN to endosomal delivery (30). Alternatively, OCRL1 modulation of actin dynamics may be required for the sorting or delivery of lysosomally destined cargos.

How does loss of OCRL1 activity lead to the renal manifestations observed in Lowe syndrome patients? Our results would suggest that OCRL1 does not directly modulate the trafficking or function of megalin. Although lysosomal hydrolases bind to and can be internalized by megalin (36), it is unlikely that the slight increase in enzyme secretion we observed would significantly impede megalin binding to other ligands. Together, our results suggest that OCRL1 deficiency does not directly cause a defect in megalin trafficking or in the uptake or degradation of megalin ligands. Rather, we hypothesize that proteinuria is a downstream consequence that results from reduced levels of megalin in the renal proximal tubule of Lowe syndrome patients. We did not observe any difference in the binding or uptake of megalin ligands to HK-2 cells in which OCRL1 was acutely depleted compared with control cells and speculate that the loss of megalin results from chronic alterations in cell signaling in renal cells lacking OCRL1. To this end, it is noteworthy that both OCRL1 and CLC-5 have been suggested to associate with macromolecular complexes that include megalin at the cell surface and that could be involved in cell signaling (16, 25, 41). Additionally, megalin has been reported to undergo intramembrane proteolysis that generates a tail-containing fragment able to enter the nucleus (4). Similarly, APPL1 can translocate from endosomes to the nucleus in response to extracellular stimuli such as oxidative stress (33). Indeed, a more global response to loss of OCRL1 function is necessary to explain the other clinical abnormalities associated with Lowe syndrome. Future exploration of these possibilities will clearly be necessary to elucidate the pathway by which loss of OCRL1 function leads to renal disease in patients with Lowe syndrome.

ACKNOWLEDGMENTS

We thank M. Farquhar for constructs encoding mini-megalin, R. Nussbaum, and S. Suchy for anti-OCRL1 antibody, L. Traub for anti-Dab2 and ARH antibodies, and A. Ungewickell for advice on the OCRL1 knockdown experiments. Y. Lai provided expert technical assistance in epitope tagging and subcloning mini-megalin and other constructs. We are especially grateful to S. Guggino for advice and for providing reagents to knock down CLC-5 in renal cells.

GRANTS

This work was supported by grants from the National Institutes of Health (DK-064613), the Lowe Syndrome Association, and the Pennsylvania Department of Health to O. A. Weisz; DK-054787 (to R. P. Hughey); and by the Cellular Physiology Core of the Pittsburgh Center for Kidney Research (P30 DK079307). C. J. Guerriero was supported by T32 DK-061296 and by an American Heart Association predoctoral fellowship. C. M. Szalinski was supported in part by T32 DK-061296.

DISCLOSURES

No conflicts of interest are declared by the authors.

REFERENCES

12. Coon MG, Mukherjee D, Hanna CB, Riese DJ, Lowe M, Aguilar RC. F344 ROLE OF OCRL1 IN MEMBRANE TRAFFIC.

