Loss of clusterin expression worsens renal ischemia-reperfusion injury

Wenjun Zhou,1,3 Qiong Guan,1 Chris C. H. Kwan,1 Huifang Chen,3 Martin E. Gleave,1 Christopher Y. C. Nguan,1,2 and Caigan Du1,2

1Department of Urologic Sciences, University of British Columbia, Vancouver; 2Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia; and 3Department of Surgery, University of Montreal, Montreal, Quebec, Canada

Submitted 15 July 2009; accepted in final form 7 December 2009

Zhou W, Guan Q, Kwan CC, Chen H, Gleave ME, Nguan CY, Du C. Loss of clusterin expression worsens renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 298: F568–F578, 2010. First published December 9, 2009; doi:10.1152/ajprenal.00399.2009.—Prevention of ischemia-reperfusion injury (IRI) is a challenge in clinical care of the patients with kidney transplants or acute kidney injury, and understanding of the intrinsic mechanisms of resistance to injury in the kidney will lead to novel therapy. Clusterin, a secreted glycoprotein, is an antiapoptotic protein in cancer cells. Our study is to investigate the role of clusterin in renal IRI. Renal IRI in mice was induced by clamping renal vein and artery for 45 or 50 min at 32°C. Apoptosis of renal tubular epithelial cells (TECs) was determined by FACS analysis. Clusterin expression was examined by Western blot or immunohistochemistry. Here, we showed that clusterin protein was induced in TECs following IRI, and more tubules expressed clusterin in the kidneys following ischemia at higher temperatures. In human proximal TEC HKC-8 cultures, clusterin was upregulated by removal of serum and growth factors in medium and was downregulated by TNF-α-IFN-γ mixture. The levels of clusterin were positively correlated with cell survival in these conditions. Knockdown or knockout of clusterin expression enhanced the sensitivity of TECs to apoptosis. In experimental models of renal IRI, deficiency in clusterin expression worsened the injury, as indicated by a significant increase in renal tissue damage with higher levels of serum creatinine and blood urea nitrogen and by a poorer recovery from the injury in clusterin-deficient mice compared with wild-type mice. Our data indicate that the reduction of inducible expression of clusterin results in an increase in TEC apoptosis in the cultures and renders mice susceptibility to IRI, implying a protective role of clusterin in kidney injury.

kidney ischemia; acute kidney injury; transplantation; apoptosis; chaperone

RENAL ISCHEMIA-REPERFUSION INJURY (IRI) is an inevitable event in kidney transplantation and contributes to early kidney transplant dysfunction (4, 39, 40). In native kidneys, it is a common cause for acute kidney injury (AKI) in patients (29) who are undergoing cardiac surgery (2) or critical ill (27). The pathogenesis of renal IRI is not completely understood but has been demonstrated to associate with interstitial inflammatory leukocyte infiltration (15, 62) and renal cell death (37, 45). To date, there is no effective therapy available for renal IRI.

Clusterin (Clu; apolipoprotein J; SP-40,40; TRPM-2; SGP-2; pADHC-9; CLJ; T64; GP III; XIP8) is a secreted glycoprotein from either epithelial boundary cells in many organs or tissues (e.g., gallbladder, urinary bladder, kidney distal convoluted tubules, testis) or nonepithelial secretory cells (e.g., synovial lining cells, and ovarian granulosa cells) (1, 24). Secreted Clu (sClu), originated from cytoplasmic Clu (cClu) after posttranslational modification, is a major protein in physiological fluids: plasma, milk, urine, cerebrospinal fluid, and semen (24), in which it associates with various molecules and displays various biological functions, such as sperm maturation, membrane recycling, lipid transportation, tissue remodeling, complement inhibition, cell-cell or cell-substratum interactions, and programmed cell death (24, 55). Other studies show that it acts as a form of secreted heat shock protein or molecular chaperone (31, 59). However, it remains unclear whether Clu is a multifunctional protein or has a primary activity for all these physiological effects. Interestingly, the data from in vivo studies using genetic overexpression or knockout (KO) mice show the two faces of Clu: proapoptotic, as indicated by the fact that the absence of Clu reduces cell death in hypoxia-ischemia-induced brain damage (20), and antiapoptotic, as shown by an increase in autoimmune myocardial damage in Clu KO mice (30) or inhibition of posts ischemic brain injury is seen in the mice with overexpression of Clu (58). Therefore, it is possible that Clu can either promote or inhibit cell death, depending on where and how much it is produced.

In renal tissues, including renal tubular epithelial cells (TECs), Clu expression is upregulated following a variety of renal injuries, including unilateral ureteral obstruction (3, 48), IRI (43, 60), and rejected renal allografts in patients (10). However, the role of Clu in renal cell death has not been investigated to date. In a model of antibody-mediated glomerular injury, kidneys perfused with Clu-depleted plasma develop significantly greater proteinuria at all time points compared with control kidneys (46), and in vitro Clu at concentrations of 20–50 mg/ml partially protects LLC-PK1 cells (porcine TECs) from H2O2-induced cell death (50). The aim of our present study is to investigate the impact of renal expression of Clu in renal IRI.

MATERIALS AND METHODS

Animals and cell cultures. Both wild-type (WT) C57BL/6 (B6) and Clu KO mice in B6 background (B6-Clu+/−) were received from the breeding colonies in the animal facility at the Jack Bell Research Centre (Vancouver, BC, Canada). Clu KO mice were generated by Dr. Bruce Aronow’s group (University of Cincinnati, Cincinnati, OH) in the Swiss Black outbred genetic background (30), which were subsequently backcrossed into C57BL/6 mice (B6-Clu+/−) for 10 generations in our facility for this study. Genotype of mice was determined by PCR as described previously (30). All the animals (males, 8–10 wk old) for the experiments were cared for in accordance with the Canadian Council on Animal Care guideline under the protocols approved by the Animal Use Subcommittee at the University of British Columbia.
Human proximal TEC line HKC-8 was generated by Dr. Lorraine Racusen (41) and was kindly provided by Dr. Daniel L. Sparks (Ottawa, ON, Canada). T-HMC, a human mesangial cell line, was a gift from Dr. Tara McMorrow (35). Murine TECs were isolated from the kidney cortex as described previously (23) and immortalized with origin-deficient SV40 DNA. In brief, renal cortex was collected and minced in HBSS containing penicillin-streptomycin. The tissue fragments were washed twice with HBSS and then digested with 1 mg/ml of collagenase V (Sigma-Aldrich Canada, Oakville, ON, Canada) in HBSS at 37°C for 15 min with intermittent agitation. The digested tissue was sieved through a 40-μm Cell Strainer (BD Falcon, BD Biosciences, Mississauga, ON, Canada). After being washed with HBSS and complete K1 +/+ medium as described previously (7), the sieved cells were seeded and grown in complete K1 +/+ medium in a collagen-coated flask. Finally, the confluent monolayer was immortalized by transfection with origin-deficient SV40 DNA, and TEC clones were identified by their expression of E-cadherin and CD13 (alanine aminopeptidase) in FACS analysis. All TEC lines (HKC-8, Racusen (41) and TECs) were grown in complete K1 +/+ medium in a collagen-coated medium.

Western blot. Clu protein in cell extracts of TECs was examined by Western blot as described previously (7). Briefly, protein samples (100–150 μg/sample) were fractionated by 10% SDS-PAGE and then transferred onto nitrocellulose membranes. The expression of Clu or active caspase-3 was identified with goat polyclonal anti-Clu-α (C-18) (Santa Cruz Biotechnology, Santa Cruz, CA) or with rabbit polyclonal anti-activated caspase-3 (Asp175) antibodies (Cell Signaling Technology, Danvers, MA). The protein-antibody bands on the blot were visualized by an enhanced chemiluminescence assay (ECL, Amersham Pharmacia Biotech, Buckinghamshire, UK). Blots were re-probed using anti-actin IgG (Sigma-Aldrich Canada) for confirmation of loaded protein in each sample.

To quantitate the Clu expression in Western blot analysis, the density of Clu (sClu) and re-probed β-actin bands was measured by a densitometer. In each blot, the relative level of sClu in each sample was calculated by normalization with its density of β-actin. The final change of Clu level (Clu-sample) in treated TECs was determined relative to the basal level of Clu in untreated TECs (sClu-basal), which was supposed to be the same in all separate experiments. The Clu-sample was calculated by the following equation: Clu-sample = (sClu-sample/actin-sample)/(sClu-basal/actin-basal). Thus the basal Clu level in TECs in K1 +/+ medium was equal to 1 unit.

Apoptosis analyses. Apoptosis in TEC cultures was measured by fluorescence-activated cell sorter (FACS) analysis with annexin-V conjugated with phycoerythrin (annexin-V-PE) for early apoptosis and 7-aminoactinomycin D (7-AAD) for late apoptosis staining following the manufacturer’s protocol (BD Biosciences). Thus, in FACS graph, nonapoptotic (viable) cells were in the lower left quadrant, late apoptotic cells in the upper left quadrant (7-AAD positive only), apoptotic cells in the upper right quadrant (both annexin-V- and 7-AAD positive), and early apoptotic cells in the lower right quadrant (annexin-V- positive only). Briefly, monolayers of TEC cultures were released by a brief incubation with trypsin-EDTA solution (Sigma-Aldrich) and then incubated with annexin-V-PE in 1× binding buffer for 15 min. The intensity of fluorescence of apoptotic cells was measured by a flow cytometry and analyzed compared with background controls using CELLQUEST software (BD Biosciences). The apoptosis in cell cultures, measured by FACS analysis, was also confirmed by the levels of active form of caspase-3, which was determined by anti-active caspase-3 antibody in Western blot analysis as described above.

Immunohistochemical analysis. The kidneys harvested from mice were perfused with PBS prior to formalin fixation, paraffin embedding and section. The levels of Clu protein in kidney sections were assessed by a standard immunohistochemical method. Briefly, after deparaffinization and rehydration buffered-formalin-fixed sections were treated with 3% H2O2 in Tris-buffered saline (TBS) (pH 7.4) for 30 min at room temperature (RT) to quench endogenous peroxidase, followed by permeabilization with 0.2% Triton X-100 for 10 min at RT. After being washed with TBS containing 0.1% Tween 20 (TBS-T) and blocked with 2% normal rabbit serum, the sections were incubated with goat polyclonal anti-Clu-α (C-18) (Santa Cruz Bio- tech) (1:200 dilution) overnight at 4°C. The immune complexes of Clu and anti-Clu antibody on the tissue section were detected by using anti-goat Ig antibody conjugated with biotin and were visualized with use of a 3,3'-diaminobenzidine peroxidase substrate kit (Vector Labs, Burlington, ON, Canada). The control negative staining included the sections incubated with normal goat IgG instead of anti-Clu antibody or the sections of the kidneys from Clu KO mice.

To quantitate the Clu expression in the kidney in the immunohistochemical analysis, the number of Clu-expressing tubules was counted in each view, which was randomly selected in the region of renal cortex under ×400 magnification (high-power field). The levels of Clu expression in each kidney were quantitated by averaging at least 20 nonoverlapping fields in two serial sections.

Stable expression of anti-Clu shRNA. shRNA expression vector (pHEx-siRNA) was developed in our laboratory from a modified herpes simplex virus (HSV) expression vector pHEx6300 as described previously (8). Synthetic oligonucleotide sequences, for generation of shRNA targeting Clu mRNA (5′-GCA GCA GCA GAT TCA TCA TCA T-3′) and nonspecific control (scrambled) (5′-AAT CGA ATA GCC TAT GCC GTT-3′) (8, 26), were synthesized by Integrated DNA Technologies (Coralville, IA) and ligated into pHEx-siRNA to create pHEX-Clu or pHEx-control. The vectors were transfected into HKC-8 cells by using Lipofectamine2000 (Invitrogen-GIBCO, Carlsbad, CA) following the manufacturer’s protocol. Transfected cells were grown in the presence of Zeocin (up to 500 μg/ml) (Invitrogen-GIBCO) and selected by cell sorting using FACS for green fluorescence protein. More than 95% of control or siRNA-transfected cells showed strong green fluorescence by either flow cytometry or microscopy.

Renal IRI model. Both B6 and B6-Clu+/− mice were anesthetized with sodium pentobarbital (40 mg/kg) and isoflurane as needed. The kidneys were exposed through a flank incision. Ischemia was induced in left kidney by clamping renal pedicles at different temperatures (under ice, room temperature, 32 or 37°C) for 45 or 50 min. After the clamps were released, reperfusion of the kidneys was confirmed visually. In the examination of Clu expression in the kidney, the nonischemic right kidney was kept for life support. In the study of renal injury and survival, it was removed, and the uninephrectomized mice were included as sham-operated controls. Renal tissues and sera were harvested at 24 or 48 h after ischemia.

Determination of renal function and semiquantitative assessment of renal injury. Function of the kidneys was determined by the levels of serum creatinine or blood urea nitrogen (BUN), which were measured by QuantiChrom creatinine assay kit (BioAssay Systems, Hayward, CA) or QuantiChrom urea assay kit (BioAssay Systems). Histological assessment of tubular injury in kidney sections was performed in a blinded fashion. Formalin-fixed and paraffin-embedded sections (5-μm thickness, longitudinal) were stained by both hematoxylin and eosin (H&E) and periodic acid-Schiff (PAS) methods. The percentage of damaged tubule (combined both necrosis and vacuolization) in total of tubules was counted in each view, randomly selected in the region of renal cortex under ×400 magnification and averaged at least 20 nonoverlapping fields for each kidney. Similarly, the number of tubules containing proteinaceous cast formation in the cortex was counted in each randomly selected view under ×100 magnification and averaged at least 10 nonoverlapping field for each kidney.

Statistical analysis. One-way ANOVA or t-tests (one-tailed distribution) in Microsoft Excel software were used as appropriate for comparisons between groups. Animal survival was compared by log-rank (Mantel-Cox) test in Prism survival analysis software. Data were collected from individual experiments or mice in each study for statistical analysis. A P value of ≤0.05 was considered significant.
RESULTS

Upregulation of Clu protein in kidney cells in the response to injury and in vitro culture. Upregulation of Clu transcript has been noted in the kidneys with IRI (43) and associates with apoptosis (49), but the expression of Clu protein in the kidneys following ischemia at different temperatures and its impact on renal injury are not seriously investigated. The expression of renal Clu protein was examined by immunohistochemistry in tissue samples of the kidneys with IRI in a life-supporting model, in which the nonischemic kidney was not removed. As shown in Fig. 1A, both naive kidneys and the kidneys following ischemia under the ice had the similar staining of Clu in glomeruli and some tubular cells. When the ischemia was performed at RT, 32°C, or 37°C, a higher level of Clu expression, as indicated by remarkable staining, was noted in renal tubules of both cortex and medulla (proximal and distal tubules, Henle’s loop). Some of these tubules were obviously damaged as evidenced by the loss of brush border and dilatation, whereas other Clu-positive tubules were normal in morphology. As demonstrated in Fig. 1B, following the increase in temperature during ischemia, more tubules were stained Clu positive, as indicated by an increase in the number of Clu-expressing tubules per view from 3.27 ± 1.97 in ice-cold-ischemic kidneys to 20 ± 0.85 in RT-ischemic kidneys (P < 0.01, n = 3), which was further increased to 27.46 ± 3.93 in the kidneys following 32°C ischemia (vs. RT-ischemic kidneys, P = 0.05, n = 3). There was a trend of increase in the Clu-expressing tubules in 37°C-ischemic kidneys compared with those in 32°C-ischemic kidneys, but this difference was not statistically significant in this limited number of mice. These data suggest that the high temperatures during the ischemia correlate with higher severity of renal IRI and more tubules with Clu expression.

As demonstrated by Western blot in Fig. 2, both HKC-8 and T-HMC cells constitutively produced Clu in cultures, as seen both cClu (presecreted Clu) and sClu in cell extracts, and sClu...
in culture supernatants, whereas these two protein bands were absent in TECs (MKC-Clu) isolated from Clu KO mice. Other four bands in the low molecular weight range were seen in all three samples including Clu deficient (Fig. 2A), suggesting that the bands were nonspecifically stained. Since the phenotype of Clu-expressing cells in the glomeruli was not characterized as shown above, the expression of Clu in human mesangial cells may be spontaneous or upregulated within the glomerulus in these kidneys following IRI.

Regulation of Clu expression and its correlation with cell apoptosis in TECs in cultures. In HKC-8 cells, Clu expression was upregulated by the removal of growth factors and serum in K1 culture medium (K1−/− medium) and was downregulated by the stimulation with mixture of TNF-α (5 ng/ml) and IFN-γ (10 ng/ml) (Fig. 3A). In Western blot analysis, when 1 unit A: presence of Clu proteins in cellular extracts was detected by Western blot with anti-Clu-α antibody, and β-actin was reprobed in the same blot with anti-β-actin IgG antibody. B: secreted Clu (sClu) in culture supernatants was detected by Western blot. cClu, cytoplasmic Clu (or presecreted Clu). The data are representative of 3 independent experiments.

Fig. 2. Spontaneous expression of Clu protein in human kidney cells in cultures. Total protein extract was prepared from T-HMC (human mesangial cell line), HKC-8 (proximal tubular epithelial cell line), and tubular epithelial cells (TECs; MKC-Clu) isolated from Clu KO mice as control. A: presence of Clu proteins in cellular extracts was detected by Western blot with anti-Clu-α antibody, and β-actin was reprobed in the same blot with anti-β-actin IgG antibody. B: secreted Clu (sClu) in culture supernatants was detected by Western blot. cClu, cytoplasmic Clu (or presecreted Clu). The data are representative of 3 independent experiments.

AJP-Renal Physiol • VOL 298 • MARCH 2010 • www.ajprenal.org
that in WT cells (MKC-1) following stimulation with proinflammatory cytokines. As shown in Fig. 6A, no Clu protein was detected in MKC-Clu cells by Western blot analysis. Under the same culture conditions (Fig. 6B), the spontaneous apoptosis was significantly higher in MKC-Clu cultures than those in WT MKC-1 cultures (18.54 ± 3.87% in MKC-1 vs. 10.68 ± 2.8% MKC-1, P = 0.0008, n = 6–8). Following the stimulation with mixture of TNF-α and IFN-γ, the level of apoptosis was significantly increased in MKC-1 cultures compared with those in medium controls (16.85 ± 5.76% in cytokine-treated vs. 10.68 ± 2.8% in medium control cells, P = 0.0177, n = 8–10), but, surprisingly, no significant difference was seen in MKC-Clu cultures (19.35 ± 6.45% in cytokine-treated vs. 18.54 ± 3.87% in medium control cells, P = 0.7856, n = 8–10). Furthermore, the apoptosis in cytokine-treated MKC-1 was no significantly lower than that in cytokine-treated MKC-Clu (P = 0.2024, n = 8–10). These data indicate that the deficiency in renal expression of Clu results in an increase in spontaneous apoptosis, which may be induced by sublethal oxidative stress in untreated cultures but has no effect on apoptosis in cytokine-treated cultures. In Clu-deficient TECs, the cytokine stimulation does not induce additional apoptosis. All these suggest that cytokine-dependent apoptosis may be mediated by their downregulation of Clu in TECs, as shown in Fig. 3.

Severity of injury was positively correlated with the dysfunction of Clu-deficient kidneys. To confirm the correlation of the severity of renal tissue damage in Clu-deficient kidneys with their renal function in mice, the levels of serum creatinine and blood urea nitrogen (BUN) were measured in KO mice vs. WT
controls following IRI and sham-operation. As shown in Fig. 7A, the levels of serum creatinine in mice with renal IRI were significantly higher in the KO group (1.12 ± 0.47 mg/dl) than in WT controls (0.22 ± 0.09 mg/dl) (P < 0.0001, n = 12). Similar results were seen in the measurement of BUN, as indicated by the higher levels of BUN in KO mice (226.01 ± 50.18 mg/dl) compared with those in WT controls (107.61 ± 82.11 mg/dl) (P = 0.0038, n = 12) (Fig. 7B). Although the levels of both creatinine and BUN in KO mice trended to be higher than those in WT mice following sham operation, statistical significance was not reached (n = 0.8, n = 4). These data indicate that the high levels of IRI contribute to more severe dysfunction of the kidneys in Clu-deficient mice.

Expression of Clu improved IRI recovery. Renal IRI is acute injury and its recovery results from tubular repair, characterized by remodeling of the basement membrane, cellular pro-

Fig. 4. Increase of apoptosis in TECs expressing anti-Clu shRNA. HKC-8 cells were stably transfected with pHEX-control (HKC-8-control) or pHEX-Clu (HKC-8-Clu) in the presence of zeocin. A: reduction of Clu protein in TECs expressing anti-Clu shRNA, the Clu proteins in cellular extracts was detected by Western blot with anti-Clu-α antibody, and β-actin as protein loading controls was reprobed in the same blot with anti-β-actin IgG antibody. B: both HKC-8-Clu and HKC-8-control cells in K1+/+ medium were treated with IFN-γ (10 ng/ml) and TNF-α (5 ng/ml) mixture for 48 h, cell apoptosis was determined by FACS analysis with 7-AAD (late apoptosis) and annexin-V conjugated with phycoerythrin (early apoptosis) staining. Data are representative of 4 separate examinations. C: statistical comparison of cell apoptosis, as indicated by total annexin-V positive staining, in all 4 examinations. Data are presented as means ± SD in each group. P = 0.0006 (HKC-8-Clu vs. HKC-8-control in culture medium only); P = 0.0309 (HKC-8-Clu vs. HKC-8-control in cytokine-treated cultures).
F574

CLUSTERIN PROTECTS THE KIDNEY FROM INJURY

Fig. 5. More severe renal damage in Clu KO mice following renal IRI. Clu KO and wild-type (WT) C57BL/6 male mice were subjected to renal ischemia-reperfusion at 32°C of body temperature for 45 min. A: tubular necrosis and vacuolization of renal cortex were scored by a semiquantitative histological analysis with periodic acid-Schiff staining in a blinded manner. Percentage of damaged tubules (necrosis and vacuolization) in each section of renal cortex was counted at ×400 magnification and averaged for each mouse with no less than 20 viable fields per slide. Data are presented as means ± SD in each group (n = 5). P = 0.0085 (KO vs. WT). B: number of tubules containing proteinaceous cast formation in the cortical substance was counted in each randomly selected view under ×100 magnification and was averaged at least 10 nonoverlapping field for each kidney. Data are presented as means ± SD in each group (n = 5), P = 0.0489 (KO vs. WT).

DISCUSSION

Renal IRI is a primary cause for AKI in native kidneys and largely contributes to kidney transplant dysfunction. So far no effective treatment is available for AKI. It has been recognized for a while that the nature of renal IRI consists of not only cell death (necrosis or apoptosis) but also sublethal injury causing cell dysfunction (12). Therefore, understanding of renal protection from sublethal injury toward complete cell death could lead to prevention of IRI in clinic. Our present study demonstrates that kidney cells including tubular and mesangial cells express Clu in cultures or in vivo in response to rejection or IRI. In TEC cultures, downregulation of Clu expression by treatment with proinflammatory cytokines is positively correlated to cell apoptosis, and knockdown of Clu expression results in an increase in proinflammatory cytokine-induced cell apoptosis. In a mouse model of renal IRI, compared with Clu KO mice Clu expression associates with the reduction of renal IRI and dysfunction of the kidneys and also contributes to the promotion of renal repair. These results suggest that local expression of Clu may protect renal cells from cell death in AKI as well as kidney transplant rejection.

Several previous studies have demonstrated that upregulation of Clu expression is seen in both tubular and mesangial cells in the kidneys with either predominant glomerular or tubular injury (6, 22, 51, 61) and is not necessary to associate with primary site of tissue injury, as indicated by the fact that Clu in TECs is induced in the kidneys with nephritis (6) or at a site distant from the primary injury in cisplatin nephrotoxicity (51). Similarly, our study shows that Clu expression is upregulated in both glomerular cells and TECs in the kidney following IRI, in which the majority of tubular injury occurs in the outer medulla. The Clu-expressing tubules, characterized by either normal morphology or dilatation, are increased in number following higher severity of renal IRI induced by 32–37°C ischemia and spread in both cortex and medulla, not only limited to the primary region of injury (Fig. 1). All these studies suggest that kidney cells expressing Clu are the response to the injury stress but may not be necessary to the programmed irreversible cell death.

To date, the molecular basis of Clu expression in kidney cells has not been investigated yet. Our data show that constitutive expression of Clu protein is seen in both TECs and mesangial cells in cultures (Fig. 2) as well as in the kidneys experiencing IRI but not very much in naive kidneys (Fig. 1), suggesting that sublethal stress may induce Clu protein biosynthesis in kidney cells. Cells in culture could behave differently from cells in vivo in many ways, one of which is that cells in cultures impose a state of sublethal oxidative stress (19), implying that oxidative stress may be an inducer for Clu expression in kidney cells. Indeed, upregulation of Clu has been reported in many types of cells in vitro following exposure to sublethal oxidative stress (9, 53, 57), and in vivo tubular expression of Clu is induced in the kidneys in both acute glycerol-induced renal failure and chronic vitamin E-selenium deficiency, two kidney models of in vivo oxidant injury (34). The hypothesis of oxidation-induced Clu expression is further supported by the observations that Clu gene transcription is regulated by heat shock protein (HSP) transcription factor 1 (31) and that, in ureteral obstruction, the kinetics of Clu expression in the kidneys is very similar to that of HSP70, both reaching maximum levels 48 h after the beginning of obstruction (47). All these observations indicate that the transcription and posttranscriptional processing of Clu gene may be activated by heat shock or oxidative stress.

Induction of Clu in oxidative-stressed kidneys may either be involved in the process of cell death or prevent cell death as a feedback response within a hostile environment, where cellular destruction potentially occurs. Indeed, in the models...
of neural injury, the absence of Clu reduces cell death in hypoxia-ischemia-induced brain damage (20), and in cultures of striatal cells Clu mediates H₂O₂- and amyloid beta-peptide-induced cell death (13), suggesting the pro-apoptotic activity of Clu in brain tissue. By contrast, deficiency in Clu expression increases autoimmune myocardial damage (30) and renal IRI in this study (Fig. 5), and Clu protects LLC-PK1 kidney cells from H₂O₂-induced cell death in cultures (50). Furthermore, the increases in cell apoptosis are seen in TEC cultures with a lower level of Clu (Figs. 3 and 4) or in MKC-Clu (Fig. 6). All these data indicate that cardiac and renal Clu expression has a protective role in cell death. This observation is strongly supported by other studies in a variety of cancer cells; high Clu
expression is associated with progression of many types of cancers in patients (25, 28, 38, 52), and antisense oligodeoxynucleotides targeting Clu expression in cancer cells increases cell death or decreases cell survival in the response to the treatment with chemotherapeutic drugs, growth factor withdrawal, and oxidative H2O2, respectively (16, 17, 32, 56). To date, the mechanisms by which Clu acts differently in neural cells vs. cardiac and renal cells are not known.

Based on the data presented by this study, it may be postulated that following oxidative stress induced by ischemia-reperfusion (18, 36), Clu expression in kidney cells, in particular TECs, precedes the development of cellular destruction and protects sublethal-stressed cells from cell death (apoptosis and necrosis), supporting the hypothesis that an increase in Clu expression may be a physiological defense from sublethal-stressed cells to reduce further cell damage and to maintain cell viability during periods of increased oxidative stress. Our results also show that proinflammatory cytokines (IFN-γ and TNF-α) attenuate Clu expression in TEC cultures (Fig. 3), and it seems that the apoptosis induced by proinflammatory cytokine TNF-α and IFN-γ is dependent on their effect on the reduction of Clu expression in TECs, as indicated by no significant difference in the apoptosis between cytokine-treated and untreated Clu-deficient cells (Fig. 6). These data suggest that renal proinflammatory cytokines, accumulated from activated infiltrating leukocytes and perhaps renal resident cells, induce cell death of stressed TECs and mesangial cells by disruption of their Clu expression. However, the molecular mechanisms by which the cytokines downregulate Clu expression in kidney cells remain further investigation.

In addition to antiapoptotic function, Clu may act as an inhibitor of complement-mediated cytotoxicity, an important pathological factor for IRI (54, 63). Early studies have shown that Clu binds to membrane attack complex, resulting in inhibition of complement-mediated attack. The deposition of Clu associated with C3 and C5b-9 complex of complement has been found in renal biopsies from all forms of renal disease (11, 14, 33), and its expression is independent of the presence of an intact complement system (5). An interesting study demonstrates that aging mice deficient in Clu develop a progressive glomerulopathy characterized by the deposition of immune complexes in the mesangium, in young KO animals the development of immune complex lesions is accelerated by unilateral nephrectomy-induced hyperfiltration, and the injected immune complexes are localized to the mesangium of KO but not WT mice (42), suggesting a protective action of Clu against kidney injury at least in part through its prevention of immune complex disposal in the kidneys.

In conclusion, renal IRI is one of problems related to a majority of patients admitted to the intensive care unit and the dysfunction of kidney transplants. Unfortunately, treatment for this complex syndrome is as yet lacking, and understanding of it is limited. Our present study clearly demonstrates that aging mice deficient in Clu develop a progressive glomerulopathy characterized by the deposition of immune complexes in the mesangium, in young KO animals the development of immune complex lesions is accelerated by unilateral nephrectomy-induced hyperfiltration, and the injected immune complexes are localized to the mesangium of KO but not WT mice (42), suggesting a protective action of Clu against kidney injury at least in part through its prevention of immune complex disposal in the kidneys.

In conclusion, renal IRI is one of problems related to a majority of patients admitted to the intensive care unit and the dysfunction of kidney transplants. Unfortunately, treatment for this complex syndrome is as yet lacking, and understanding of it is limited. Our present study clearly demonstrates that aging mice deficient in Clu develop a progressive glomerulopathy characterized by the deposition of immune complexes in the mesangium, in young KO animals the development of immune complex lesions is accelerated by unilateral nephrectomy-induced hyperfiltration, and the injected immune complexes are localized to the mesangium of KO but not WT mice (42), suggesting a protective action of Clu against kidney injury at least in part through its prevention of immune complex disposal in the kidneys.

In conclusion, renal IRI is one of problems related to a majority of patients admitted to the intensive care unit and the dysfunction of kidney transplants. Unfortunately, treatment for this complex syndrome is as yet lacking, and understanding of it is limited. Our present study clearly demonstrates that aging mice deficient in Clu develop a progressive glomerulopathy characterized by the deposition of immune complexes in the mesangium, in young KO animals the development of immune complex lesions is accelerated by unilateral nephrectomy-induced hyperfiltration, and the injected immune complexes are localized to the mesangium of KO but not WT mice (42), suggesting a protective action of Clu against kidney injury at least in part through its prevention of immune complex disposal in the kidneys.

In conclusion, renal IRI is one of problems related to a majority of patients admitted to the intensive care unit and the dysfunction of kidney transplants. Unfortunately, treatment for this complex syndrome is as yet lacking, and understanding of it is limited. Our present study clearly demonstrates that aging mice deficient in Clu develop a progressive glomerulopathy characterized by the deposition of immune complexes in the mesangium, in young KO animals the development of immune complex lesions is accelerated by unilateral nephrectomy-induced hyperfiltration, and the injected immune complexes are localized to the mesangium of KO but not WT mice (42), suggesting a protective action of Clu against kidney injury at least in part through its prevention of immune complex disposal in the kidneys.
ACKNOWLEDGMENTS
The authors thank Dr. Daniel L. Sparks with permission from Dr. Lorraine Racusen for providing HKC-8 cells and Dr. Tara McMorrow for T-HMC cells.

GRANTS
This work was supported by a grant fund by the Kidney Foundation of Canada, and start-up supports from the University of British Columbia and the Vancouver Coastal Health Research Institute (C. Du). W. Zhou received a Canadian Institutes of Health Research postdoctoral training award.

DISCLOSURES
The authors have nothing to disclose.

REFERENCES

