












V2 receptor vasopressin analog dDAVP. Furthermore, this
result demonstrates regulated phosphorylation of UT-A3,
which has not been known previously to be a target for
regulated phosphorylation. The time course of phosphorylation

of both Ser84 and Ser486 of UT-A1, and Ser84 of UT-A3, in
IMCD suspensions indicates a very rapid response, within 1
min of vasopressin addition. This finding is coherent with time
course studies of urea transport in isolated, perfused IMCD

Fig. 8. Immunogold electron microscopy dem-
onstrates that pSer84 UT-A and pSer486 UT-A
are predominantly associated with intracellular
compartments. A: overview of an IMCD cell in
midregion of inner medulla labeled with
pSer84 UT-A. B: higher magnification of the
area highlighted in A. Few gold particles are
directly associated with the apical plasma
membrane (apm). Abundant labeling is ob-
served in the subapical Golgi apparatus (g) and
intracellular vesicles. C: further example of the
association of pSer84 UT-A with the subapical
Golgi apparatus. D: overview of an IMCD cell
in midregion of inner medulla labeled with
pSer486 UT-A. E: higher magnification of the
area highlighted in D. Few gold particles are
directly associated with the apm. Abundant
labeling is observed in subapical vesicles.
F: pSer486 UT-A is also abundant in the sub-
apical Golgi apparatus. G: overview of a prin-
cipal cell in IMCD labeled with L446 (UT-
A1/3 specific antibody). Inset: area highlighted
in box 1 and demonstrates labeling of the
subapical Golgi apparatus. H: area corresponds
to box 2 in G and demonstrates abundant la-
beling of the apical plasma membrane. I: area
corresponds to box 3 in G and demonstrates
that some gold particles are also observed in
the basolateral plasma membrane. In all im-
ages, gold particles are 10 nm in diameter.
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segments showing the initial rise in urea permeability �40 s
after vasopressin exposure (40). It is also consistent with
UT-A1 phosphorylation studies using [32P] incorporation to
show increased phosphorylation in the same time frame (44).
The time course was similar for both sites and for Ser84 in both
UT-A1 and UT-A3, suggesting that the same signaling path-
ways were rate limiting in each case. In addition, the time
course of AQP2 phosphorylation at Ser256 has been shown to
be similar (8, 15). Previous studies suggested that this rate-
limiting process for the vasopressin response is at or before the
level of cAMP generation (29, 40).

We also confirmed the strong regulation of phosphorylation
at Ser84 and Ser486 using immunohistochemistry. In general,
with confocal immunofluorescence, only IMCD cells were
labeled and labeling included both the cell periphery and
intracellular regions. Phosphorylated UT-A1/3 is not restricted
to the apical plasma membrane, contrary to what was seen
previously in the case of phosphorylated AQP2 at Ser269 (14,
27). Thus, the results do not provide evidence pointing to a
specific role of phosphorylation of UT-A1 or UT-A3 in plasma
membrane retention or regulation of endocytosis as for Ser269
phosphorylation of AQP2 (26). Supporting this view were our
findings from immunogold electron microscopy using the two
antibodies that showed virtually exclusive presence of phos-
phorylated UT-A in intracellular compartments, with much of
the intracellular labeling associated with the Golgi apparatus
and Golgi vesicles in the apical region of the cells (Fig. 8). Our
data highlight the need for high-resolution imaging techniques
for confirmation of confocal microscopy studies, especially
when drawing conclusions regarding subcellular distribution. It
remains possible that the phosphorylation at either site plays a
role in exocytosis of UT-A1 or UT-A3 as proposed by Blount
et al. (6) and that the phosphorylation is rapidly removed on
delivery of the urea channels to the plasma membrane. Another
possibility is that some portion of plasma membrane UT
channels is phosphorylated, but that the phosphorylation is
masked by proteins that bind to the phosphorylation sites or
due to conformational changes in channel structure.

The amino acid sequence surrounding the Ser84 phosphoryla-
tion site is SKRRESELPRRA (Ser84 is underlined). As can be
seen, the Ser84 site is in a basic region of the protein (surrounded
by arginine and lysine moieties up- and downstream). Thus, it is
likely that Ser84 is phosphorylated by one or more “basophilic”
kinases (25). The amino acid sequence surrounding the Ser486
phosphorylation site is FPRRKSVFHIE (Ser486 is underlined).
Thus, Ser486 is also in a basic region with arginines and
lysines upstream from the phosphorylation site. This again
points to basophilic kinases as candidates for phosphorylation
of Ser486. Vasopressin is known to signal in part through
activation of the basophilic kinase protein kinase A (PKA).
The phosphorylation motif signature for PKA is x-(R/K)-(R/
K)-x-(S/T)-x (25). (This terminology gives the amino acid
sequence surrounding the target serine or threonine where R/K
means either arginine or lysine.) In collecting ducts, vasopres-
sin has also been found to signal via pathways involving
several additional kinases including myosin light chain kinase
(MLCK) (8), Akt or protein kinase B (31), and ERK1/2 (31).
Among these, only Akt has the phosphorylation motif signa-
ture to be a candidate for the two phosphorylation sites under
study in this paper, i.e., Ser84 and Ser486 of urea transporters.
The Akt phosphorylation target signature is R-x-R-x-x-(S/

T)-�, where � is a hydrophobic amino acid (25). MLCK has
only one known target, viz. myosin regulatory light chain A
and B isoforms where Thr18 and Ser19 are phosphorylated
(sequence PQRATSNVFA) (17, 18). The signature for Erk1/
2-mediated phosphorylation has been reported to be x-P-x-(S/
T)-P-x (proline moieties both up- and downstream from target
Ser or Thr) (25). No ERK1/2 candidate sites have been iden-
tified in UT-A1 or UT-A3 by mass spectrometry as of this
writing, although other critical sites may remain undiscovered
(42). In addition, because inhibitors of calmodulin block some
aspects of vasopressin signaling (10), it is worthwhile to
consider CaM-kinase II which is strongly expressed in the
IMCD (39) as a candidate for phosphorylation at Ser84 and
Ser486 of UT-A1/3. The CaM-kinase II target signature has
been reported to be x-R-x-x-(S/T)-x-x. Both Ser84 and Ser486
have a basic amino acid in the -3 position, making them
compatible with CaM-kinase II targets. Furthermore, Rinschen
et al. (32) recently reported that vasopressin activates CaM
kinase II in collecting duct cells. Finally, Stewart et al. (37)
proposed that urea transport by UT-A3 may be regulated via
phosphorylation by an acidophilic kinase casein kinase II. Its
target motif signature is x-x-(S/T)-x-x-(E/D)-x (25). The only
demonstrated phosphorylation sites in UT-A1/3 that are com-
patible with this motif are Ser-62 and Ser-63 (DLRSSDEDS),
although this site has not been found to show an increase in
phosphorylation in response to vasopressin (2).

PKA is capable of phosphorylating both Ser84 and Ser486
in vitro (2) but such a demonstration does not imply that PKA
is the only or even the chief kinase responsible for phosphor-
ylation at these sites. However, Zhang et al. (44) demonstrated
that the moderately specific PKA inhibitor H-89 blocked va-
sopressin-induced phosphorylation of UT-A1, pointing to a
role for PKA in regulation of sites present in UT-A1, presum-
ably Ser486 and/or Ser499.
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