Intrarenal suppression of angiotensin II type 1 receptor binding molecule in angiotensin II-infused mice

Hiromichi Wakui,1* Kouichi Tamura,1* Miyuki Matsuda,1 Yunzhe Bai,2 Toru Dejima,1 Atsu-ichiro Shigenaga,1 Shin-ichiro Masuda,1 Koichi Azuma,1 Akinobu Maeda,1 Tomonori Hirose,3 Tomoaki Ishigami,1 Yoshiyuki Toya,1 Machiko Yabana,1 Susumu Minamisawa,4 and Satoshi Umemura1

1Department of Medical Science and Cardiorenal Medicine, 2Cardiovascular Research Institute, and 3Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohoma; and 4Department of Life Science and Medical Bio-science, Waseda University, Tokyo, Japan

EVIDENCE SUGGESTS THAT THE activation of angiotensin II (ANG II) type 1 receptor (AT1R) through the tissue renin-angiotensin system (RAS) promotes angiotensinogen gene expression and pathological responses in cardiovascular cells and tissues by promoting the constitutive internalization of AT1R signaling (1, 7, 11, 30, 40, 44). The plasma membrane AT1R level in the kidney is modulated by intrarenal ATRAP expression and to determine the role of AT1R signaling in mediating these effects. C57BL/6 male mice were subjected to vehicle or ANG II infusions at doses of 200, 1,000, or 2,500 ng·kg⁻¹·min⁻¹ for 14 days. ANG II infusion caused significant suppression of ATRAP expression in the kidney but did not affect ATRAP expression in the testis or liver. Although only the highest ANG II dose (2,500 ng·kg⁻¹·min⁻¹) provoked renal pathological responses, such as an increase in the mRNA expression of angiotensinogen and the α-subunit of the epithelial sodium channel, ANG II-induced decreases in ATRAP were observed even at the lowest dose (200 ng·kg⁻¹·min⁻¹), particularly in the outer medulla of the kidney, based on immunohistochemical staining and Western blot analysis. The decrease in renal ATRAP expression by ANG II infusion was prevented by treatment with the AT1R-specific blocker olmesartan. In addition, the ANG II-mediated decrease in renal ATRAP expression through AT1R signaling occurred without an ANG II-induced decrease in plasma membrane AT1R expression in the kidney. On the other hand, a transgenic model using a series of kidney cross-transplant experiments also showed that the activation of intrarenal AT1R is required for the development of hypertension in spontaneously hypertensive rats (35). Chronic infusion of ANG II is one of the representative models of hypertension and end-organ damage and is associated with the activation of the intrarenal renin-angiotensin system, including upregulation of renal angiotensinogen through the AT1R pathway (10, 20, 49). Furthermore, previous studies using a series of kidney cross-transplant experiments also showed that the activation of intrarenal AT1R is required for the development of ANG II-dependent hypertension and the related end-organ damage (5, 6). Thus we hypothesized that the intrarenal distribution and regulation of endogenous ATRAP expression may also be involved in the pathophysiological responses to ANG II. Accordingly, studies were performed to examine the changes in intrarenal ATRAP expression during ANG II infusion in mice and to determine the role of AT1R in mediating these responses. Furthermore, we examined whether the plasma membrane AT1R level was influenced by the ANG II-mediated decrease in the renal ATRAP level and/or by an increase in the renal ATRAP level in a transgenic model, to analyze the relationship between ATRAP and AT1R expression in the kidney.

METHODS

Materials. ANG II was purchased from Sigma. The AT1R-specific blocker olmesartan (RNH6270) was kindly supplied by Daiichi-Sankyo Pharmaceuticals (Tokyo, Japan).

Animals and ANG II infusion. Adult male C57BL/6 mice (10–12 wk of age, Oriental Yeast Kogyo) were divided into three groups (n = 6–8 mice/group) for the subcutaneous infusion of vehicle or ANG II (either 200, 1,000, or 2,500 ng·kg⁻¹·min⁻¹) via an osmotic minipump (ALZA) for 14 days. The percentage of body weight increase (% BW increase) was calculated as follows: % BW increase = [(BW at day 14) – (BW at baseline)] × 100/(BW at baseline). In several of the experiments, vehicle or olmesartan (10 mg·kg⁻¹·day⁻¹) in the

* H. Wakui and K. Tamura contributed equally to this work.

Address for reprint requests and other correspondence: K. Tamura, Dept. of Medical Science and Cardiorenal Medicine, Yokohama City Univ. Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan (e-mail: tamukou@med.yokohama-cu.ac.jp).

http://www.ajprenal.org 0363-6127/10 Copyright © 2010 the American Physiological Society F991
drinking water was administered for the same period. The ANG II and olmesartan dosages were determined from previous reports (10, 18, 48). Following experimental treatment, the mice were anesthetized and the tissues were removed into liquid nitrogen or fixative. The Animal Studies Committee of Yokohama City University approved all the animal experimental protocols.

Blood pressure measurements. Systolic blood pressure and heart rate were measured by the tail-cuff method (BP monitor MK-2000; Muromachi Kikai), as described previously (34, 42). BP monitor MK-2000 made it possible to measure blood pressure without preheating the animals, thus allowing the avoidance of stressful conditions (17).

Analysis of total ATRAP and AT1R protein expression. The characterization and specificity of the anti-mouse ATRAP antibody and the anti-AT1R antibody (sc-1173, Santa Cruz Biotechnology) were described previously (42). Western blot analysis was performed to examine the total protein expression of ATRAP and AT1R as described (40, 42). Briefly, whole tissue extracts were used for SDS-PAGE, and transferred membranes were incubated with either an anti-ATRAP antibody or 2) an anti-AT1R antibody and subjected to enhanced chemiluminescence (Amersham Biosciences). The images were analyzed quantitatively using a Fuji LAS3000 Image Analyzer (Fujifilm) for determination of the total ATRAP and AT1R protein levels. To measure the tissue expression ratio of ATRAP to AT1R, each ATRAP protein level was divided by the corresponding total AT1R protein level obtained by reprobing, and thus was derived from the same extract.

Real-time quantitative RT-PCR analysis. Total RNA was extracted from the kidney with ISOGEN (Nippon Gene, Tokyo, Japan), and cDNA was synthesized using the SuperScript III First-Strand System (Invitrogen). Real-time quantitative RT-PCR was performed by incubating the RT product with TaqMan Universal PCR Master Mix and a designed TaqMan probe (Applied Biosystems), essentially as described previously (34). RNA quantity was expressed relative to the 18S rRNA endogenous control.

Immunohistochemistry for ATRAP and AT1R expression. Immunohistochemistry was performed as described previously (14, 42). The kidneys were perfusion-fixed with 4% paraformaldehyde, subsequently embedded in paraffin, and cut into sections of 4-μm thickness. The sections were dewaxed and rehydrated. Antigen retrieval was performed by microwave heating. The sections were treated for 60 min with 10% normal goat serum in phosphate-buffered saline and blocked for endogenous biotin activity using an Avidin/Biotin Blocking kit (Vector Laboratories). For the study of ATRAP and AT1R, the sections were incubated at 4°C overnight with either 1) an anti-ATRAP antibody or 2) an anti-AT1R antibody diluted at 1:100, as described previously (42). The sections were incubated for 60 min with (a) biotinylated goat anti-rabbit IgG (Nichirei), blocked for endogenous peroxidase activity by incubation with 0.3% H2O2 for 20 min, treated for 30 min with streptavidin and biotinylated peroxidase (DAKO), and then exposed to dianaminobenzidine. The sections were counterstained with hematoxylin, dehydrated, and mounted. Immunoreactivity was semiquantitatively evaluated in a blinded manner. Briefly, 20 microscopic fields/slide were selected at random for evaluation. Examination was performed using a microscope with ×200 magnification (Olympus) and an integrated digital camera system (Olympus). Image Pro-plus computer image analysis software (Media Cybernetics, Bethesda, MD) was used to analyze the brown stain pixel density and to quantify the protein levels, as described previously (10, 15, 32, 47).

Analysis of plasma membrane AT1R expression. The plasma membrane was specifically extracted from tissues using a Plasma Membrane Extraction Kit (K268–500, Biovision) according to the manufacturer’s protocol and then used for SDS-PAGE (43). Membranes were incubated with either 1) an anti-AT1R antibody or 2) anti-flotillin-2 monoclonal antibody (no. 3436, Cell Signaling Technology) and subjected to enhanced chemiluminescence (Amersham Biosciences). Flotillin-2 is constitutively localized to the plasma membrane and was used as an internal control protein on the plasma membrane (36). The images were analyzed quantitatively using a Fuji LAS3000 Image Analyzer (Fujifilm) for determination of the plasma membrane AT1R protein levels.

Generation of ATRAP transgenic mice. To produce ATRAP transgenic mice, hemagglutinin (HA)-tagged mouse ATRAP cDNA was subcloned into pCAGGS expression vector, which contained a cytomegalovirus enhancer and chicken β-actin (CAG) promoter (28), and the resultant transgene construct was microinjected into the pronuclei of fertilized mouse embryos at the single-cell stage to generate transgenic mice (C57BL/6 strain). The ATRAP transgene positive (+) mice were mated with C57BL/6 wild-type mice to obtain ATRAP transgene positive (+) mice and littermate control mice for the experiments. Animal genotyping was performed as previously described. Transgenic mice were identified by PCR using 5′-TGCTT-AJP-Renal Physiol • VOL 299 • NOVEMBER 2010 • www.ajprenal.org

Fig. 1. Effects of continuous ANG II infusion on body weight (A) and systolic blood pressure (B) during the treatment period. Adult male C57BL/6 mice were divided into 3 groups (n = 6–8 mice/group) for the subcutaneous infusion of vehicle or ANG II (either 200 or 1,000 ng·kg⁻¹·min⁻¹) via an osmotic minipump for 14 days. The values of the percent body weight increase and systolic blood pressure are expressed as means ± SE (n = 6–8/group). *P < 0.05 vs. vehicle. †P < 0.05 vs. day 0.
GGGGCAACTTCACATC-3’ as the forward primer and 5’-ACG-GTGCATGTGGTAGACGAG-3’ as the reverse primer.

Statistical analysis. Values are expressed as means ± SE in the text and figures. The data were analyzed using ANOVA. If a statistically significant effect was found, a post hoc analysis with Scheffé’s test was performed to detect differences between the groups. Values of P < 0.05 were considered statistically significant.

RESULTS

Effects of ANG II on body weight and systolic blood pressure. Vehicle-infused mice gained BW during the study period (%BW increase, 17.2 ± 2.2%, n = 8) (Fig. 1A). Mice infused at a low dose of ANG II (200 ng·kg⁻¹·min⁻¹) displayed a similar gain in BW (%BW increase, 19.9 ± 1.4%, n = 6). In contrast, mice subjected to a high dose of ANG II (1,000 ng·kg⁻¹·min⁻¹) exhibited a significant inhibition of BW gain (%BW increase, 8.7 ± 2.1%, n = 7, P < 0.05 vs. vehicle and P < 0.01 vs. ANG II 200 ng·kg⁻¹·min⁻¹). All groups displayed the same range of systolic blood pressure, as determined by tail-cuff plethysmography (105–110 mmHg) at baseline (Fig. 1B). Systolic blood pressure remained stable in the vehicle-infused mice during the study period, with systolic blood pressure averaging 113 ± 6 and 112 ± 6 mmHg by days 7 and 14, respectively (n = 8). Similarly, systolic blood pressure did not exhibit any evident change in the low-dose ANG II (200 ng·kg⁻¹·min⁻¹)-infused mice (110 ± 5 and 120 ± 5 mmHg by days 7 and 14, respectively, n = 6). In contrast, systolic blood pressure was significantly elevated, to 137 ± 6 and 140 ± 7 mmHg on days 7 and 14 of ANG II infusion, respectively, in the high-dose ANG II (1,000 ng·kg⁻¹·min⁻¹)-infused mice. Thus, in this study, the low dose of ANG II (200 ng·kg⁻¹·min⁻¹) corresponds to a subpressor dose, and the high dose of ANG II (1,000 ng·kg⁻¹·min⁻¹) corresponds to a pressor dose.

Suppression of ATRAP expression by ANG II in the kidney. We previously showed that ATRAP and AT1R are expressed in various mouse tissues, including the kidney, testis, and liver (42). Thus we examined whether continuous ANG II infusion would regulate ATRAP expression in a tissue-specific manner.

![Western blot showing the signal specificity of the ANG II type 1 receptor (AT1R)-associated protein (ATRAP) protein detected by the polyclonal anti-ATRAP antibody through visualization of the entire size range (A) and representative Western blots showing the effects of continuous ANG II infusion on the total protein expression of ATRAP and AT1R in the tissues of mice infused with vehicle or ANG II (200 or 1,000 ng·kg⁻¹·min⁻¹) for 14 days (liver (B); testis (C); kidney (D)]. Measurement of the ATRAP-to-AT1R ratio was performed as described in METHODS. The values were calculated relative to those obtained with extracts from mice infused with vehicle and are expressed as means ± SE (n = 6/group). *P < 0.05 vs. vehicle.
using Western blot analysis with an ATRAP-specific antibody (40, 42). Since the antibody developed against ATRAP is relatively new (42), we initially examined the signal specificity through visualization of the entire size range on Western blot analysis. Western blot analysis of tissue extracts from the testis and kidney of adult male C57BL/6 mice revealed that the polyclonal antibody for mouse ATRAP recognized a prominent band of 18 kDa, which was consistent with the predicted molecular mass of mouse ATRAP (18 kDa) (Fig. 2A).

Subsequently, we examined whether ANG II stimulation affected the expression of total ATRAP and AT1R expression using whole tissue extracts. The results of Western blot analysis showed that the hepatic and testicular protein levels of both ATRAP and AT1R were similar in the vehicle- and ANG II-infused mice, resulting in no apparent change in the relative expression ratio of ATRAP to AT1R in the liver and testis (Fig. 2, B and C). On the other hand, with respect to the renal expression of ATRAP and AT1R, although the total AT1R protein levels did not exhibit any evident change in either the vehicle-infused or ANG II-infused mice, the ATRAP protein levels at the subpressor and pressor dose in the ANG II-infused mice were significantly lower than in vehicle-infused mice after 14 days of treatment (Fig. 2D). As a result, the relative expression ratio of ATRAP to AT1R in the kidney was significantly suppressed at the subpressor and pressor dose in the ANG II-infused mice compared with the vehicle-infused mice, resulting in no apparent change in the relative expression of ATRAP to AT1R in the kidney was significantly suppressed at the subpressor and pressor dose in the ANG II-infused mice vs. vehicle-infused mice (Fig. 2D).

Effects of ANG II on mRNA expression of ATRAP, angiotensinogen, NADPH oxidase 4, and α-subunit of the epithelial sodium channel. We next examined the pathophysiological consequence of the observed ANG II-induced decreases in renal ATRAP expression by analyzing the mRNA expression of angiotensinogen, NADPH oxidase 4 (Nox4), and the α-subunit of the epithelial sodium channel (α-ENaC) in the kidney of the vehicle- and ANG II-infused mice. For this experiment, we also employed a higher dose of ANG II (2,500 ng·kg⁻¹·min⁻¹) for 2 wk of treatment. Systolic blood pressure was progressively elevated to 132 ± 5 and 157 ± 6 mmHg on days 7 and 14 of ANG II infusion, respectively, from 107 ± 5 mmHg at baseline, in the higher dose ANG II (2,500 ng·kg⁻¹·min⁻¹)-infused mice.

The results of real-time quantitative RT-PCR analysis showed that ANG II infusion (200, 1,000, or 2,500 ng·kg⁻¹·min⁻¹) for 14 days led to similarly significant decreases in the renal expression of the ATRAP mRNA compared with vehicle infusion (Fig. 3A). With respect to the renal pathological effects of ANG II stimulation, there were significant elevations of renal angiotensinogen and α-ENaC mRNA expression by ANG II infusion (2,500 ng·kg⁻¹·min⁻¹), while the renal Nox4 mRNA expression was not affected (Fig. 3, B–D).

Suppression of ATRAP immunostaining by ANG II in outer medulla of the kidney. We also examined the effect of ANG II infusion on the intrarenal distribution and expression levels of ATRAP by immunohistochemical analysis. The ATRAP immunohistochemical signal was detected throughout the kidney. A relatively high level of ATRAP immunoreactivity was observed in the outer medulla, and moderate ATRAP immunostaining was also observed in the renal cortex and inner medulla in vehicle-infused mice after 14 days of treatment (Fig. 4). However, there was a significant decrease in ATRAP immunoreactivity in the outer medulla of the kidney in ANG II-infused mice. This suppression of ATRAP expression was likely to be region specific in the outer medulla, since no apparent suppression of ATRAP expression was observed in the inner medulla or cortex (Fig. 4). ANG II infusion did not affect the intrarenal distribution or the relative levels of AT1R immunoreactivity (Fig. 5).

The semiquantitative evaluation with immunohistochemical analysis revealed a region-specific reduction of ATRAP immunostaining in the outer medulla with both the subpressor (200 ng·kg⁻¹·min⁻¹) and pressor (1,000 ng·kg⁻¹·min⁻¹)
dose in the ANG II-infused mice, without any significant change in the pattern of intrarenal distribution or levels of AT1R immunostaining (Fig. 6). Furthermore, the results of Western blot analysis using tissue extracts from the respective kidney regions confirmed the region-specific decrease in ATRAP protein expression in the outer medulla by chronic ANG II infusion (Fig. 7).

Effects of AT1R-specific blocker olmesartan on ANG II-mediated suppression of ATRAP expression in the kidney. We further examined whether the AT1R was responsible for the ANG II infusion-mediated intrarenal suppression of ATRAP expression using the AT1R-specific blocker olmesartan. Olmesartan treatment did not affect the BW gain in mice infused with the subpressor dose (200 ng·kg⁻¹·min⁻¹, % BW increase, 20.7 ± 1.7%, n = 8), but restored normal BW gain in the mice infused with the pressor dose (1,000 ng·kg⁻¹·min⁻¹) of ANG II (101 ± 7 mmHg, n = 8, P < 0.05, ANG II 1,000 ng·kg⁻¹·min⁻¹+olmesartan vs. ANG II 1,000 ng·kg⁻¹·min⁻¹). Olmesartan treatment also inhibited the development of hypertension in the mice treated with the pressor dose (1,000 ng·kg⁻¹·min⁻¹) of ANG II (systolic blood pressure 104 ± 6 mmHg, n = 6, P < 0.05, ANG II 1,000 ng·kg⁻¹·min⁻¹+olmesartan vs. ANG II 1,000 ng·kg⁻¹·min⁻¹), while olmesartan did not affect systolic blood pressure in the mice infused with the subpressor dose (200 ng·kg⁻¹·min⁻¹, 101 ± 7 mmHg, n = 6). Furthermore, olmesartan treatment completely prevented the suppressive effects of either the pressor or subpressor dose of ANG II on ATRAP protein expression in the kidney (Fig. 8). No significant changes were observed in AT1R protein expression in the kidney by olmesartan treatment.

Lack of any decrease in plasma membrane AT1R expression in the kidney by chronic ANG II infusion. The results in Fig. 2 show that ANG II stimulation led to a decrease in the levels of total ATRAP protein expression in the kidney, but not other tissues, including the testis. On the other hand, the total AT1R protein expression in all of the tissues examined was unchanged by ANG II treatment (Fig. 2). Thus, to examine whether ANG II-mediated suppression of intrarenal ATRAP expression affects cell surface AT1R expression in the kidney in response to ANG II stimulation, the plasma membrane fraction was specifically extracted from the kidney and testis, and the plasma membrane AT1R protein expression was analyzed.

In the testis, the ANG II infusion at the subpressor dose (200 ng·kg⁻¹·min⁻¹) tended to decrease the expression of the plasma membrane AT1R protein, and the pressor dose (1,000

\[\text{ANG II-INDUCED SUPPRESSION OF RENAL ATRAP EXPRESSION} \]
ng·kg⁻¹·min⁻¹) significantly reduced the plasma membrane AT1R protein levels (Fig. 9A). Since olmesartan treatment completely prevented the ANG II-induced suppressive effects on the plasma membrane AT1R protein levels in the testis (Fig. 9A), these results indicated that ANG II stimulation promoted AT1R internalization. In the kidney, the plasma membrane AT1R protein levels for the subpressor and pressor doses in the ANG II-infused mice were comparable to those in the vehicle-infused mice and were not affected by olmesartan treatment (Fig. 9B).

Decrease in plasma membrane AT1R expression in the kidney of ATRAP transgenic mice. In terms of AT1R internalization in the kidney, although ANG II stimulation decreased the ATRAP protein level and olmesartan treatment recovered it to the baseline value (Fig. 8), the plasma membrane AT1R protein level was still unaltered (Fig. 9). We hypothesized that olmesartan-mediated recovery of the downregulated ATRAP expression back to the baseline level would be insufficient to promote AT1R internalization in the kidney and that an increased expression of renal ATRAP beyond the baseline level would promote AT1R internalization and decrease plasma membrane AT1R expression. Thus, to upregulate renal ATRAP expression, we newly generated ATRAP transgenic mice using HA-tagged mouse ATRAP cDNA subcloned into the pCAGGS expression vector to test these hypotheses (Fig. 10A) (28).

We used these ATRAP transgenic mice for the first time to analyze a putative function of ATRAP in vivo. Western blot analysis of ATRAP expression at the protein level revealed the highest renal expression level (3-fold) of ATRAP (HA-ATRAP) in line 19 (Tg19), among the three lines of ATRAP transgene positive mice (Fig. 10B), and Tg19 was therefore used for further analysis. The results of real-time quantitative RT-PCR analysis also showed a 3.7-fold increase in the baseline renal ATRAP mRNA expression over littermate control mice (Wt) in the Tg19 mice (Fig. 10C). While the ATRAP (HA-ATRAP) protein expression in the kidney of Tg19 mice increased compared with Wt, the total kidney AT1R protein expression in Tg19 did not differ from that in Wt (Fig. 10D). On the other hand, the plasma membrane AT1R protein expression in the kidney of Tg19 was significantly decreased compared with Wt at baseline (Fig. 10E).

Promotion of AT1R internalization and inhibition of induced expression of angiotensinogen gene in response to ANG II in the kidney of ATRAP transgenic mice. With respect to the inhibitory effect of ANG II treatment on the renal ATRAP-to-

Fig. 5. Representative kidney sections showing the expression of the total AT1R protein in the kidney of mice infused with vehicle or ANG II (200 or 1,000 ng·kg⁻¹·min⁻¹ for 14 days (A). Positive areas for the AT1R appear as the brown dots in the sections. Higher magnification of kidney sections showing the effects of continuous ANG II infusion on immunohistochemical localization of AT1R expression in the renal cortex, outer medulla, and inner medulla in mice treated with vehicle or ANG II (B). Original magnification: ×20 (A); ×200 (B).
AT1R ratio, while chronic ANG II infusion significantly decreased the ratio through a suppression of renal ATRAP expression in C57BL/6 wild-type mice (Fig. 2), ANG II treatment did not affect the ratio at all in Tg19 mice (Fig. 11A). Regarding AT1R internalization in the kidney, while the plasma membrane AT1R protein level was not affected by either chronic ANG II stimulation or olmesartan treatment in C57BL/6 wild-type mice (Figs. 8 and 9), it was significantly decreased by ANG II infusion in Tg19 (Fig. 11B), thereby indicating that enhancement of renal ATRAP expression beyond baseline promotes AT1R internalization.

Since the body size and BW of Tg19 mice were not different from the Wt at baseline (data not shown), we finally examined the physiological effects of overexpression of ATRAP in Tg19 with respect to blood pressure, response to ANG II, and target organ effects. The systolic blood pressure of Tg19 mice was comparable with that of Wt at baseline, and chronic ANG II infusion significantly and similarly increased systolic blood pressure in Tg19 and Wt (Fig. 11C). However, while ANG II infusion in Wt increased the angiotensinogen mRNA expression level in the kidney by 2.25-fold, the mRNA upregulation in response to ANG II infusion was significantly inhibited in Tg19 (Fig. 11D). These results indicate that the renal enhancement of ATRAP expression inhibits the ANG II-mediated activation of renal angiotensinogen gene expression, most likely through a promotion of AT1R internalization in response to ANG II.

DISCUSSION

The present data show that either a subpressor or pressor infusion of ANG II in mice causes a significant suppression of intrarenal ATRAP expression and that this response is dependent on the activation of AT1R. The decrease in intrarenal ATRAP expression during continuous ANG II infusion was demonstrated at the mRNA level by quantitative real-time RT-PCR, and at the protein level by Western blotting, and was supported by immunohistochemistry. In addition, the ANG II-mediated decrease in renal ATRAP expression through AT1R signaling occurred concomitantly with the lack of ANG II-induced decrease in plasma membrane AT1R expression in the kidney. Furthermore, a transgenic model increase in renal ATRAP expression beyond baseline expression was accompanied by a reduction in plasma membrane AT1R expression in the kidney, and by the promotion of renal AT1R internalization and the inhibition of an increase in renal angiotensinogen gene expression in response to ANG II.

Several previous studies have reported that activation of the intrarenal renin-angiotensin system and the AT1R pathway plays an important role in the pathogenesis of hypertension and renal injury (19, 25, 33). With respect to the mechanisms involved in ANG II-induced hypertension, the AT1R-mediated enhancement of renal angiotensinogen, collecting duct renin, intrarenal ANG II levels, medullary oxidative stress, and the failure to downregulate renal AT1R expression levels are all reported to be involved in the sustained effects of continuous ANG II elevation on eliciting hypertension (12, 13, 20, 23, 31, 50). Because the biological actions of ANG II are influenced by the AT1R expression levels, and ANG II infusion in mice specifically lacking AT1R in the kidney failed to develop hypertension (6), investigation of the renal activity of AT1R signaling in ANG II-induced hypertension is important to elucidate the mechanisms responsible for the cardiovascular and renal functional changes observed in this hypertension model.

We previously cloned ATRAP as a novel molecule which interacts with AT1R and showed that ATRAP suppressed ANG II-induced hypertrophic and proliferative responses of cardiovascular cells by inducing a constitutive internalization...
Thus a tissue-specific regulatory balancing of ATRAP and AT1R expression may be involved in the modulation of AT1R signaling in each tissue. We previously showed that ATRAP is expressed in a variety of mouse tissues, as is the AT1R, and that dietary salt intake modulates renal ATRAP expression (42). In this study, the expression of the hepatic and testicular ATRAP protein was not affected by continuous ANG II infusion. Although activation of the tissue renin-angiotensin system is important for the pathogenesis of hypertension and is associated with organ injury, the liver and testis are not target organs of hypertensive tissue injury. Our previous studies showed that the progression of hypertension did not affect hepatic angiotensinogen gene expression in genetically hypertensive rats, which is consistent with the results in the present study (38, 39).

In terms of the regulation of the intrarenal renin-angiotensin system by ANG II stimulation, previous studies by Navar and others (9, 20, 25, 27) established that ANG II is accumulated in the kidney of rats upon infusion, a response that is prevented by AT1R-specific blockers. Further evidence from experiments using rats suggests that AT1R-specific blockers decrease intrarenal ANG II levels by preventing AT1R-mediated uptake, as well as AT1R-mediated induction of intrarenal angiotensinogen, which is a substrate of ANG II (26). We previously showed that ATRAP is abundantly expressed and widely distributed along the renal tubules from Bowman's capsule to the inner medullary collecting ducts in mice (42). In this study, while continuous ANG II infusion did not have any apparent effects on renal total AT1R protein expression in C57BL/6 wild-type mice, which is consistent with previous reports using rats (12, 13), there was a significant decrease in renal ATRAP expression in ANG II-infused mice, and thereby a marked suppression of the renal expression ratio of ATRAP to AT1R at a subpressor dose of ANG II, even without an increase in blood pressure. This suppression of the renal ATRAP expression by ANG II is AT1R dependent, as it is prevented by treatment with olmesartan.
Previous studies also showed that chronic ANG II stimulation in rats leads to the activation of the intrarenal renin-angiotensin system, with an augmentation of renal angiotensinogen expression (20), enhancement of oxidative stress through increases in NADPH oxidase activity (3, 4), and increases in sodium retention through an upregulation of \(\beta \)-ENaC expression (2). On the other hand, a previous study reported that the mouse kidney is relatively resistant to ANG II, including oxidative stress, compared with the rat kidney (45). In the present study, intrarenal angiotensinogen, NADPH oxidase, and \(\beta \)-ENaC mRNA expression was not significantly affected by ANG II infusion of either the subpressor (200 ng·kg\(^{-1}\)·min\(^{-1}\)) or pressor dose (1,000 ng·kg\(^{-1}\)·min\(^{-1}\)) for 2 wk, despite a decrease in renal ATRAP expression.

Thus we next employed a higher dose of ANG II (2,500 ng·kg\(^{-1}\)·min\(^{-1}\)) for 2 wk of treatment, which was recently shown to cause hypertension and renal injury even in mice (46), and showed that it did provoke progressive blood pressure increases and pathological renal responses, including elevated expression levels of renal angiotensinogen and \(\alpha \)-ENaC genes, along with a concomitant decrease in renal ATRAP expression (Fig. 3). These observations suggest that a decrease in renal ATRAP expression might be a preceding renal marker of pathological responses to ANG II stimulation in vivo. Nevertheless, because ANG II infusion of the subpressor dose already exerted a down-regulatory effect on renal ATRAP expression without increases in the renal mRNA level of angiotensinogen and \(\alpha \)-ENaC, there was a lack of any direct relationship between ATRAP and the expression of angio-

\[\text{Fig. 8. Representative Western blots showing the effects of continuous ANG II infusion on the total protein expression of ATRAP and AT1R in the kidney of mice infused with vehicle or ANG II (200 or 1,000 ng·kg\(^{-1}\)·min\(^{-1}\)) with or without olmesartan treatment (10 mg·kg\(^{-1}\)·day\(^{-1}\) in the drinking water) for 14 days. Measurement of the ATRAP-to-AT1R ratio was performed as described in METHODS. The values were calculated relative to those obtained with extracts from mice infused with vehicle without olmesartan and are expressed as means±SE (n=6/group). *P < 0.05 vs. vehicle without olmesartan.}\]

\[\text{Fig. 9. Representative Western blots showing the effects of continuous ANG II infusion on the plasma membrane AT1R protein level in the tissues of mice infused with vehicle or ANG II (200 or 1,000 ng·kg\(^{-1}\)·min\(^{-1}\)) with or without olmesartan treatment (10 mg·kg\(^{-1}\)·day\(^{-1}\) in the drinking water) for 14 days. Measurement of the ATRAP-to-AT1R ratio was performed as described in METHODS. The values were calculated relative to those obtained with extracts from mice infused with vehicle without olmesartan and are expressed as means±SE (n=6/group). *P < 0.05 vs. vehicle without olmesartan.}\]
tensinogen and α-ENaC genes in the kidney. Thus the results did not establish any causality or effect with respect to changes in renal ATRAP at this stage. Therefore, further investigation is needed to elucidate the exact molecular causal relationship between them.

The results of immunohistochemistry, including semi-quantitative evaluation and Western blot analysis using the respective kidney regions, revealed a reduction of ATRAP expression in the outer medulla resulting from ANG II stimulation. Since previous studies showed that the outer medulla plays an important role in ANG II-mediated renal injury (23, 24), the suppression of renal ATRAP, particularly in the outer medullary region, may play a role in the renal pathological responses elicited by ANG II stimulation. While the intrarenal colocalization of ATRAP with AT1R suggests a functional role for ATRAP, it does not necessarily implicate ATRAP in electrolyte transport, renal injury, or hypertension, and the precise tubular function of ATRAP remains to be determined. The detailed molecular mechanism responsible for the tissue-specific AT1R-mediated suppression of ATRAP expression is still unclear. Further studies are necessary to determine the regulatory machinery of ATRAP gene transcription, including the transcription factors interacting with the promoter region of ATRAP gene and the functional effects of ATRAP on ANG II-mediated pathological responses using cultured renal tubular cells, and such studies are now underway.

Previous in vitro results suggested that ATRAP promotes AT1R internalization so as to inhibit AT1R signaling (37). In the present study, chronic ANG II infusion with either the low or high dose caused significant suppression of endogenous ATRAP expression in the kidney, but not in the testis (Fig. 2).
On the other hand, ANG II infusion did not alter plasma membrane AT1R expression in the kidney but significantly decreased it in the testis (Fig. 8), while total AT1R expression was not altered by ANG II in either of these tissues (Fig. 2). As a result, it is probable that testicular ATRAP promoted substantial ANG II-induced AT1R internalization, which was estimated by comparing the plasma membrane AT1R level with the total AT1R level.

In terms of AT1R internalization in the kidney, although ANG II downregulated ATRAP expression and olmesartan treatment recovered it to the baseline level (Fig. 8), the plasma membrane AT1R expression itself was not affected at all (Fig. 9), thereby still indicating the possibility that renal ATRAP exerts no effect on AT1R internalization in the kidney. We hypothesized that upregulation of renal ATRAP expression beyond baseline promotes AT1R internalization such that it is detected as a decrease in plasma membrane AT1R expression in the kidney without a change in the total AT1R protein level.

Thus, to examine the ATRAP-mediated effect on renal AT1R internalization by a different strategy in vivo, we produced ATRAP transgenic mice. The results demonstrated that enhancement of renal ATRAP expression in transgenic mice caused a decrease in the plasma membrane AT1R level, even at baseline without ANG II stimulation, irrespective of there...
being no change in the total AT1R level in the kidney (Fig. 10). Furthermore, the results of ANG II infusion experiments showed that the plasma membrane AT1R level was further decreased by ANG II stimulation in the kidney of ATRAP transgenic mice (Fig. 11), which was accompanied by a decreased response of renal angiotensinogen mRNA expression to ANG II. This is in contrast to there being no change in the plasma membrane AT1R level by ANG II in the kidney of wild-type mice (Fig. 9). These results collectively suggest that enhancement of renal ATRAP expression beyond baseline promotes AT1R internalization in response to ANG II. A recent study by Oppermann et al. (29) also showed that a genetic deficiency of ATRAP in mice caused an enhanced surface expression of AT1R in the kidney, which is consistent with the results in this study.

The results of the present study show that continuous ANG II infusion decreased intrarenal ATRAP expression through ANG II-mediated AT1R signaling, particularly in the outer medulla, with the lack of any decrease in plasma membrane AT1R expression in the kidney in C57BL/6 wild-type mice. On the other hand, transgenic overexpression of ATRAP reduced the plasma membrane AT1R level in the kidney at baseline and further decreased the plasma membrane AT1R expression in response to ANG II stimulation, concomitant with the decreased ANG II-induced response of the angiotensinogen gene, despite there being no change in the total AT1R level.

Nevertheless, a limitation of the present study is that our findings strongly suggest that ATRAP at supraphysiological levels can alter the plasma membrane levels of AT1R at baseline and in response to ANG II stimulation, but with no detectable physiological effect on blood pressure. Target organ effects such as proteinuria and degree of renal damage by histological examination were not analyzed in this study. The only detectable consequence was a difference in angiotensinogen mRNA expression in response to ANG II stimulation, but it remains unclear whether this would translate to a difference in angiotensinogen protein levels.

In conclusion, these results suggest that AT1R and ATRAP modulate each other, at least in the kidney, and that activation of AT1R signaling has a dominant effect over endogenous renal ATRAP under chronic ANG II infusion, but that renal ATRAP activation by a transgenic model that increases ATRAP expression beyond baseline may cause a constitutive reduction of plasma membrane AT1R expression and a promotion of AT1R internalization in response to ANG II. Further studies to analyze downstream signaling events mediated by activation of AT1R under the condition of ATRAP overexpression are warranted to elucidate the detailed molecular mechanisms and pathophysiological significance of ATRAP-mediated inhibition of AT1R signaling in vivo.

ACKNOWLEDGMENTS

The authors thank Emi Maeda and Hiroko Morinaga for technical assistance and helpful discussion. The authors also thank Dr. Kevin Boru for English editing of this manuscript.

GRANTS

This work was supported in part by grants from the Japanese Ministry of Education, Science, Sports, and Culture, by a Health and Labor Sciences Research grant, and by grants from the Salt Science Research Foundation (1033), the Mitsubishi Pharma Research Foundation, and the Strategic Research Project of Yokohama City University.

REFERENCES

