In vivo nuclear translocation of mineralocorticoid and glucocorticoid receptors in rat kidney: differential effect of corticosteroids along the distal tubule

Daniel Ackermann,1,2 Nikolay Gresko,3 Monique Carrel,3 Dominique Loffing-Cueni,3 Daniel Habermehl,4 Celso Gomez-Sanchez,5 Bernard C. Rossier,6 and Johannes Loffing1,3

1Unit of Anatomy, Department of Medicine, University of Fribourg, Fribourg; 2Clinic for Nephrology and Hypertension, University Hospital of Bern, Bern; 3Institute for Anatomy, University of Zürich, Zürich; 4German Cancer Research Center, Heidelberg, Germany; 5Department for Endocrinology, G. V. (Sonny) Montgomery Veterans Affairs Medical Center, University of Mississippi, Jackson, Mississippi; and 6Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland

Submitted 29 July 2010; accepted in final form 19 September 2010

Acknowledgments

Address for reprint requests and other correspondence: J. Loffing, Univ. of Zurich, Institute of Anatomy and Zurich Centre for Integrative Human Physiology, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland (e-mail:johannes.loffing@anatom.uzh.ch).

http://www.ajprenal.org

The mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR) mediate the effects of corticosteroids in virtually all organs, including the brain, heart, lung, and kidney. Renal MR- and GR-dependent signaling is involved in the control of electrolyte transport (56) and regulation of cell metabolism including gluconeogenesis and ammoniagenesis (30). Studies on gene-modified mice confirmed the pivotal physiological relevance of both receptors. MR- and GR-deficient mice die shortly after birth due to severe salt wasting or impaired lung maturation, respectively (3, 6).

The MR and the GR are ligand-dependent transcription factors, that share high homologies in the DNA- and ligand-binding domains, and which have distinct affinities for corticosteroid hormones (57). While the affinity of the MR for aldosterone and physiological glucocorticoids (i.e., corticosterone in rodent and cortisol in human) is high (K_d in the range from 0.5 to 3 nM), the GR has >10 times lower affinity for these steroids (K_d in the range from 20 to 65 nM) (1). Ligand-binding induces a dimerization of the receptors, which is thought to be followed by the translocation of the receptor-ligand complex to the cell nucleus where it then binds to specific MR- and GR-dependent response elements in the promoter regions of target genes (56). MR and GR may not only form homodimers (MR-MR or GR-GR) but also heterodimers (MR-GR), which may differentially activate or repress gene networks and hence may contribute to the significant complexity of MR- and GR-dependent signaling (14).

Because physiological glucocorticoids circulate in the blood plasma at $100–1,000$ times higher concentrations than aldosterone, mammalian species had to develop mechanisms to provide mineralocorticoid specificity to target cells (14). One major mechanism that evolved and protects the MR and GR from glucocorticoid access is mediated by the enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), which rapidly metabolizes physiological glucocorticoids into metabolites that have weak or no affinity for the receptors. Accordingly, tissues with high aldosterone responsiveness are characterized by high expression levels of 11β-HSD2 (4, 14, 56). Within the rodent kidney, 11β-HSD2 is highly abundant in the late distal convoluted tubule (DCT2), the connecting tubule (CNT), and the collecting duct (CD) (4), which hence form the so-called aldosterone-sensitive distal nephron (ASDN) (36). Along the ASDN, aldosterone stimulates sodium reabsorption via activation of the epithelial sodium channel (ENaC) and the Na-K-ATPase that are expressed in the apical and basolateral plasma membrane of the ASDN cells, respectively (56).

Although the function of mineralo- and glucocorticoid receptors as well as their receptors appears to be well established and several studies addressed the localization of MR and GR along the mammalian nephron, the precise cellular and subcellular
localization of MR and GR in specific nephron portions and cell types under normal and steroid-stimulated conditions are still unclear. Immunohistochemical, hormone binding, and RT-PCR studies revealed the MR unambiguously along the ASDN (4, 7, 10, 13, 32, 37, 45, 53), but MR localization in upstream nephron portions such as the thick ascending limb (TAL) is less clear. Similarly, a convincing demonstration of MR expression in intercalated cells in the kidney in vivo is lacking. So far, only some expression data on immunolocalized cells from rabbit CD suggested the expression of the MR in principal cells and at least some subtypes of intercalated cells (40). However, immunohistochemical studies failed to detect MR in intercalated cells in the collecting system of rat kidneys (4, 13). In addition to the ambiguities regarding the cellular distribution of MR and GR, little is known about the corticosteroid-dependent regulation of MR and GR in the kidney in vivo. Nuclear translocation of the MR upon ligand binding has been well documented in in vitro systems (16), but an in vivo demonstration of this effect in the kidney is lacking. In fact, previous studies did not detect any substantial effect of corticosteroid dosing on the subcellular localization of MR and GR.

In addition to the ambiguities regarding the cellular distribution of MR and GR, little is known about the corticosteroid-dependent regulation of MR and GR in the kidney in vivo. In particular, demonstration of this effect in the kidney is lacking. In fact, previous studies did not detect any substantial effect of corticosteroid dosing on the subcellular localization of MR and GR. Nuclear translocation of the MR upon ligand binding has been well documented in in vitro systems (16), but an in vivo demonstration of this effect in the kidney is lacking. In fact, previous studies did not detect any substantial effect of corticosteroid dosing on the subcellular localization of MR and GR.

Therefore, the aim of the present study was to reinvestigate the cellular localization of MR and GR along the rat nephron and to study the regulation of the subcellular localization of MR and GR in response to altered corticosteroid hormone levels by using a set of highly specific antibodies against MR and GR.

MATERIALS AND METHODS

Animal experiments. Animal studies were conducted in accordance with Swiss animal welfare regulations and after written consent of the veterinarian office of the Canton of Fribourg, Switzerland. Kidneys were harvested from 1) 6- to 8-wk-old male transgenic MR-AQP2cre mice with targeted deletion of the MR in the segment-specific cells of the CD and late CNT (46), 2) from male newborn GR-deficient mice with targeted deletion of GR in all cell types (6), and 3) from male 6- to 8-wk-old Wistar rats (Charles River Laboratories, Elevage Janvier, France). Mice and rats had free access to tap water and were fed with a standard laboratory chow containing 0.3% sodium.

Three different types of experiments were performed: **experiment 1**, where rats received either a standard diet (Control, 0.3% Na+) or a high-sodium (5% Na+) diet for 5 days (High Na+); **experiment 2**, where rats were adrenalectomized and received either only an intravenous infusion of vehicle (ADX) or of a physiologically relevant concentration of aldosterone (1 μg/kg body wt -1·h -1; ADX+Aldo), and the vehicle and aldosterone were infused with a perfusor for 4 h starting 2 days after adrenalectomy; and **experiment 3**, where rats were adrenalectomized and received either a subcutaneous infusion of vehicle (ADX), low-dose corticosterone (1 μg/kg body wt -1·h -1; ADX+Low Cortico), or high-dose corticosterone (100 μg/kg body wt -1·h -1; ADX+High Cortico). Vehicle and corticosterone were infused via osmotic minipumps for two days starting immediately after ADX. At least five rats per group were studied.

For ADX, animals were anesthetized with a mixture (450 μg/kg body wt ip) containing Dormitor (1 mg/ml, Pfizer, Karlsruhe, Germany), Climisol (10 mg/ml, Grünenthal, Bern, Switzerland), and Fentanyl (0.5 mg/ml, Janssen Cilag, Baar, Switzerland). Bilateral ADX was performed. After surgery, rats were awakened with a mixture (680 μg/kg body wt sc) containing Antisedan (1 mg/ml, Pfizer), Sarmsol (1 mg/ml, Grünenthal), and Narcan (0.4 mg/ml, Opopharma, Zurich, Switzerland). All animals received a nonsteroidal pain killer subcutaneously intraoperatively.

For intravenous aldosterone application, the rats were anesthetized with the same mixture as for ADX. Surgical preparation included cannulation of the jugular vein and suprapubic cannulation of the urinary bladder for urine collection. Urine was collected for the last 15 min of every full hour. After cannulation of the jugular vein, an intravenous infusion with 0.9% NaCl was started at the rate of 0.72 ml/kg·min -1 for 30 min and then maintained at the rate of 0.36 ml/kg·min -1 for the rest of the experiment. For the aldosterone-treated rats, 45 min after the infusion was started urine was collected for 15 min (end of the control period). One hour after the start of the infusion, aldosterone (Sigma-Aldrich, Epalinges, Switzerland) was added to the solution at a concentration of 129 mmol/l (46 μg/l), resulting in a constant delivery of 1 μg/kg body wt -1·h -1. Animals were killed 3 h after starting the aldosterone treatment. Control animals were treated for 4 h with 0.9% NaCl only.

Animals of the corticosterone-treated groups received an osmotic minipump (Alzet, Charles River) during the adrenalectomy that delivered a constant rate of corticosterone (Sigma-Aldrich) dissolved in 0.9% NaCl for the following days. Control animals received the vehicle only. The physiological effects of corticosterone were studied in a different series of animals that were prepared according to the same protocol and administered the same amounts of corticosterone or carrier solution. Animals were kept in individual metabolic cages for 24 h before adrenalectomy and death, respectively. Urinary sodium and potassium concentrations in the collected samples were measured using an ion-selective electrode provided by Roche Diagnostics. We did not take any blood samples from the rats as previous experiments showed that this compromises tissue perfusion fixation likely due to hypovolemic vasoconstriction.

RT-PCR on mouse microdissected tubules. Isolated tubules were obtained by microdissection. After anesthesia (thiopental, 5 mg/100 g body wt), the left kidney was perfused with liberase blendzyme II (40 μg/ml, Roche, Basel, Switzerland) dissolved in DMEM-F12 (GIBCO, Basel, Switzerland). Thin pyramids cut along the corticomedullary axis were incubated for 30 min at 37°C and 5% CO2 in the DMEM-F12 containing 40 μg/ml liberase. The pyramids were then rinsed in the microdissection solution and kept on ice. The segments were microdissected at 4°C under stereomicroscopic observation in the same medium (DMEM-F12). Glomeruli, PCT, and proximal straight tubules, outer medullary and cortical TAL, DCT, CNT, and the different parts of the CD were isolated. Total RNA were extracted from 25 isolated glomeruli and 20 mm of each nephron segment. Isolation of tubule RNA was performed according to the standard TRizol method protocol (Invitrogen). RT was performed using Superscript II (Invitrogen) with 4 μl of 5X RT buffer, 1 μl of 50 μM random hexamers (Applied Biosystems, Foster City, CA), 1 μl 20 μM dNTP (Promega, Wallisellen, Switzerland), and 4 μl of tubule RNA diluted in H2O up to 20 μl. For analysis of MR expression along the nephron, standard PCR was carried out on 25% of the total amount of RT product from 20 mm of each isolated nephron segment. MR and β-actin primers were used as previously described (3, 8). For GR, the following primers were applied: 5′-GAAAGACATTG-CAAACCTCAA-3′ and 5′-TCTGGTTTCTACGGGCGCA-3′. The following conditions for the PCR were used: annealing temperature 60°C; annealing time 1 min; elongation temperature 72°C; elongation time 45 s; 35 cycles. Total volume of PCR was loaded on a 1% agarose gel; electrophoresis was done for 30 min (constant 80 V).

Western blot analysis. MfCCD cells were grown on collagen-treated semipermeable support (Transwell, Corning Costar, Cambridge, MA) (19). For GR detection, cells were lysed in 100 μl lysis buffer [150 mM NaCl, 50 mM Tris-HCl (pH 8), 1% Triton X-100, 0.5 mM 2-aminoethylbenzenesulfonyl fluoride (Pefabloc; Roche)]. Fifty micrograms of total protein was separated by SDS-PAGE and blotted onto a nitrocellulose membrane. For MR detection, cells were lysed in buffer containing 0.12 μM molybdate. Homogenized cells were then
The kidneys of newborn GR mice were fixed by vascular perfusion with 3% paraformaldehyde and 2,000 units/ml of heparin (Jackson ImmunoResearch Laboratories, West Grove, PA). After perfusion, the kidneys were rinsed three times with ice-cold 0.01 M phosphate-buffered saline solution (PBS) and then immersion-fixed in 4% paraformaldehyde for 48 h at 4°C and embedded in paraffin according to routine procedures. Serial cryosections or paraffin sections (4 μm thick each) were incubated with one of the antibodies as described in MATERIALS AND METHODS. The sections were studied with a Zeiss fluorescence microscope by three investigators (D. Ackermann, M. Carrel, and J. Loffing), who were blinded to the treatment condition of the animals. Tubular segments were identified according to standard morphological criteria. TAL, DCT, CNT, and CD were distinguished on the basis of their localization in the cortical labyrinth and in the medullary rays, respectively. Qualitative judgments regarding immunostainings were similar for all investigators.

Statistics. Results are expressed as means ± SE. The data followed a normal distribution, and the groups were compared using a two-sided unpaired t-test.

RESULTS

Localization of MR and GR mRNA along the mouse nephron. We used RT-PCR to detect MR and GR transcripts in microdissected nephron portions from normal mice (Fig. 1).
Messenger RNA for MR was present in all distal tubules, including medullary and cortical TAL, DCT, CNT, and the entire CD, while glomeruli and proximal tubules did not show any detectable MR expression. GR mRNA was found in all microdissected sample preparations (Fig. 1).

Specificity of MR and GR antibodies. To further validate the mRNA data, we studied MR and GR expression at the protein level. We took advantage of already available mouse anti-MR (rMR1–18) (24) and anti-GR antibodies (M-20 and PA1–511A). The specificity of the antibodies was confirmed by using, as a positive control, specimens from a highly differentiated mouse collecting duct cell line (mCCD311) with known functional MR and GR expression (19). Kidneys of transgenic mice with a conditional deletion of the MR in the collecting duct (46) and kidneys from mice with a constitutive deletion of the GR in all cell types (6) served as negative controls (Fig. 2). Immunoblotting with cell lysates from the mCCD cells showed that the MR and GR antibodies detect single bands of the expected sizes of native MR and GR, respectively (Fig. 2A). In immunofluorescent experiments in mCCD cells, MR and GR antibodies showed the expected nuclear localization of the receptors (Fig. 2A). Similarly, MR and GR antibodies showed a clear nuclear staining pattern in renal tubules of kidneys from wild-type mice, which was absent in the corresponding cells of the proper control knockout mouse models (Fig. 2B).

Distribution of MR and GR protein along the rat nephron. Immunostainings with MR or GR antibodies and with nephron-specific marker molecules were used to unequivocally localize the receptors along the rat nephron. Consistent with the RT-PCR results, the MR was readily detected in cell nuclei of the CD (46) and kidneys from mice with a constitutive deletion of the GR in all cell types (6) served as negative controls (Fig. 2). Immunoblotting with cell lysates from the mCCD cells showed that the MR and GR antibodies detect single bands of the expected sizes of native MR and GR, respectively (Fig. 2A). Immunofluorescent staining (asterisk), indicating that all in detecting the MR to distal tubules, the GR showed a ubiquitous expression and was found by immunohistochemistry in cell nuclei of cells in glomeruli, proximal tubules, and distal tubules including TALs, DCTs, CNTs, and CDs. In DCT, CNT, and CD, both calbindin D28K-positive principal cells as well as calbindin D28K-negative intercalated cells showed a nuclear localization of the GR (Fig. 4, A and B). Interestingly, proximal tubules revealed, in addition to the nuclear staining, a small rim of immunofluorescence at the apical cell side. Costainings with phalloidin-FITC, which labels filamentous actin (F-actin), demonstrated that this GR-related immunostaining localized to the so-called subapical compartment, which lies just below the F-actin-rich brush border (Fig. 4, C–H). Subapical immunostaining was also seen in perfusion-fixed kidneys of adult mice (not shown), but it was not visible in the immersion-fixed kidneys of newborn mice (neither GR+/+ nor GR−/− mice) (Fig. 2). Therefore, we cannot finally prove the specificity of the subapical staining, but the fact that two different rabbit anti-GR antibodies directed against different epitopes show the same subapical...
staining pattern in rat proximal tubules, which is not seen with any other of the used rabbit antibodies, gives a high degree of confidence in the specificity of the observed staining. Another indication for the specificity of the staining is that the subapical staining is apparently regulated by corticosteroids.

Effect of altered dietary sodium intake. We next tested whether physiologically relevant variations in plasma aldosterone levels may affect the subcellular localization of MR and GR. For that purpose, rats were kept for 1 wk on a high-salt (5% NaCl) diet, which suppresses aldosterone secretion from the adrenal glands (25). Surprisingly, a high-salt diet did not remove the MR from the cell nuclei of either NKCC2-positive TAL, NCC-positive DCT, ENaC-positive principal, or ENaC-negative intercalated cells in CNT and CD (Fig. 5). Similarly, the nuclear localization of GR was not affected in cells of proximal tubules, TALs, and DCTs (Fig. 6, A–D). Only in CNTs and CDs, some of the epithelial cells did not show any nuclear localization of GR any longer. Careful analysis revealed that these cells were the ENaC- and calbindin D28K-positive segment-specific cells, while the ENaC- and calbindin D28K-negative intercalated cells maintained nuclear GR localization (Fig. 6, E–G). Double immunostainings further revealed that the segment-specific CNT and CD cells lacking nuclear GR localization are those cells that express high levels of 11β-HSD2 (Fig. 6, H–L). Consistent with this notion, the nuclear localization of GR varies along the DCT. In the early DCT (DCT1), where 11β-HSD2 expression is low, the nuclear localization of the GR is strong. However, it vanishes progressively along the late DCT (DCT2) with the increasing 11β-HSD2 levels and becomes finally almost undetectable in the end portion of the DCT2, similar to the situation in the segment-specific cells of the CNT (Fig. 7, A–D). Thus the selective lowering of plasma aldosterone concentration by increased dietary sodium intake has no effect on the subcellular localization of MR, but removes the GR from the nuclei of cells expressing high levels of 11β-HSD2.
Effect of adrenalectomy and aldosterone replacement. We next tested whether complete deprivation of any endogenous adrenal aldosterone and corticosterone production might affect the nuclear localization of MR and GR. For that purpose, rats were adrenalectomized (ADX). As expected, bilateral ADX completely removed MR and GR from the cell nuclei of all renal cell types (Fig. 8, A and C). Interestingly, also the intensity of the subapical GR immunostaining in proximal tubules was decreased. Continuous infusion of aldosterone (1 \(\mu \text{g} \cdot \text{kg body wt}^{-1} \cdot \text{h}^{-1} \)) for 4 h rapidly relocated MR and GR to the cell nuclei, which occurred virtually in all tubular epithelial cells with known MR and GR expression (Fig. 7, B and D). Similarly, the aldosterone infusion increased the subapical GR immunostaining in proximal tubules (Fig. 8D). The aldosterone-induced nuclear translocation was paralleled by a lower urinary \(\text{Na}^+ / \text{K}^+ \) excretion in aldosterone-treated than in vehicle-treated rats (Fig. 8E), confirming the physiological significance of the altered subcellular localization of the receptors.

Effect of low- and high-dose corticosterone treatment on ADX rats. In pilot experiments, we used the same experimental protocol as above and infused corticosterone at day 2 after ADX at concentrations ranging from 1 to 100 \(\mu \text{g} \cdot \text{kg body wt}^{-1} \cdot \text{h}^{-1} \). To our surprise, even the subphysiological replacement dose of 1 \(\mu \text{g} \cdot \text{kg body wt}^{-1} \cdot \text{h}^{-1} \) caused a pronounced nuclear localization of GR and MR in all GR- and MR-expressing cell types, including the 11\(\beta \)-HSD2-positive CNT and CD cells (data not shown). We speculated that the 2-day gap between ADX and corticosterone replacement may have lowered the 11\(\beta \)-HSD2 activity due to the absence of its endogenous substrate. In fact, previous observation in A6 cells and mCCD cells in vitro supported the idea that maintenance of high activity of 11\(\beta \)-HSD2 depends on the continuous presence of corticosteroids (19, 20). Accordingly, we changed our experimental protocol and substituted corticosterone immediately after ADX. Interestingly, only high-dose corticosterone replacement (100 \(\mu \text{g} \cdot \text{kg body wt}^{-1} \cdot \text{h}^{-1} \)) caused nuclear localization of all MR and GR in all epithelial cell types expressing these receptors. Low-dose corticosterone replacement (1 \(\mu \text{g} \cdot \text{kg body wt}^{-1} \cdot \text{h}^{-1} \)) induced a nuclear localization of the MR in ENaC-negative distal tubules as well as in the ENaC-positive ASDN, but located the GR to the nucleus only in proximal tubules, TALs, DCTs, and intercalated cells, but not in the classical ASDN cells with strong 11\(\beta \)-HSD2 expression (Fig. 9, A–D). Consistent with the differential regulation of the GR in the 11\(\beta \)-HSD2-positive ASDN cells, only high-dose, but not low-dose corticosterone treatment lowered the urinary \(\text{Na}^+ / \text{K}^+ \) excretion compared with vehicle administration (Fig. 9E).

DISCUSSION

Previous studies localized the MR and GR along the mammalian nephron using RNAase protection and ligand-binding assays on microdissected nephron portions (7, 10–12, 15, 33, 53) and autoradiography, in situ hybridization, and immunohistochemistry on kidney sections (4, 13, 32, 37, 55). Together with data on the localization of the 11\(\beta \)-HSD2 (reviewed in Refs. 4, 14, and 56), the data helped to define the ASDN. However, several questions regarding the precise cellular localization of MR and GR in non-ASDN cells and about the regulation of the subcellular localization of these receptors by corticosteroids in the kidney in vivo remained open. In the present study, we used detailed immunohistochemistry to provide a comprehensive analysis of the localization and corticosteroid-dependent regulation of MR and GR along the rat nephron. Our study confirms the prominent expression of MR, GR, and 11\(\beta \)-HSD2 in the ASDN. Moreover, we show for the first time convincingly the localization of MR and GR in all types of intercalated cells and establish the subcellular distribution pattern of MR and GR in ASDN and several non-ASDN cell types. Moreover, the present data reveal a distinct pattern of differential regulation of the subcellular localization of MR and GR in the various renal epithelial cell types, which allows inferring on sites and mechanisms of the complex activity of these receptors along the renal tubule.

Cellular localization of MR. The prominent localization of the MR in ENaC-positive ASDN cells is not surprising. It agrees with previous data and supports the present concept of aldosterone action (56). However, our study reveals MR expression also in the TALs and in intercalated cells, which express no or very little 11\(\beta \)-HSD2 and which are considered
not to belong to the classic aldosterone target cells. Strong MR mRNA and protein expression in the TAL has been previously reported (10, 11, 13, 32, 37, 55), but other RT-PCR (53), immunohistochemical (4), and hormone binding data (39) suggested a rather low abundance of MR protein at this site compared with the classic ASDN. Now, we found a surprisingly strong immunostaining for the MR in the TAL, which was only slightly lower than that seen in the classic ASDN cells. The strong MR expression in the TAL is consistent with previous reports describing a profound stimulatory action of aldosterone on TAL sodium transport (51, 61) but contrasts with other studies that did not reveal any effect of aldosterone on the expression and activity of the Na-K-ATPase and the potassium transport in the TAL of ADX rabbits and rats, respectively (9, 21, 54). Thus the physiological role of aldosterone in the TAL remains obscure. Our observation that the subcellular localization of MR is only regulated by aldosterone when glucocorticoids are absent (i.e., in ADX animals), indicates that physiological variations of aldosterone in intact animals are not sufficient to elicit aldosterone-specific MR-mediated transcriptional effects in the TAL.

Another surprising observation in our study is the prominent localization of the MR in all types of intercalated cells. Although ex vivo studies on immunoisolated type-B intercalated cells suggested the expression of MR in at least this subtype of intercalated cells (41), previous immunohistochemical studies consistently failed to detect any MR localization within intercalated cells in the kidney (4, 13, 37). Aldosterone is known to stimulate renal proton excretion (52), but this effect is thought to be indirect and related to activation of ENaC-dependent sodium transport in principal cells, which increases the electrochemical driving force for proton secretion by intercalated cells. Given the low expression level of 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2; H), rabbit polyclonal antibodies against GR (M-20; I), and the DNA dye DAPI (K) shown in separate red, green and blue colors (H–K) or in a merged image (L). The GR is seen in the cell nuclei of only those cells that do not express 11β-HSD2. Scale bar = ~20 μm.
Fig. 7. Detection of the GR along the DCT of a rat kept for 5 days on a high-NaCl (5% Na⁺) diet. Immunostainings with rabbit polyclonal antibodies against NCC (A), sheep polyclonal antibodies against 11β-HSD2 (B), mouse monoclonal antibodies against CB (C), and rabbit polyclonal antibodies against GR (M-20, D) on either consecutive (A, B, C/D) or the same (C and D) cryosections are shown. The DCT begins at the end of the TAL (T) and is characterized along its entire length by the expression of the NCC. The early DCT (1) and the late DCT (2) can be distinguished based on the different expression levels of 11β-HSD2 and CB, which are low in early DCT (1) and are high in late DCT (2). The GR is highly abundant in the cell nuclei of proximal tubules (P), TAL (T), and early DCT (1), but vanishes along the late DCT (2) in parallel with the increasing 11β-HSD2 levels. In the end portion of the late DCT (2*), nuclear GR localization is barely visible, which is similar to the CN. In the latter, only the CB-negative intercalated cells (arrows) show bright nuclear immunostaining for the GR. Scale bar = 20 μm.

is frequently seen in these patients (23, 44). Whether the MR may also contribute to the rapid nongenomic effects of aldosterone in intercalated cells remains elusive (60). Thus additional studies are warranted to address the yet unclear physiological relevance of the MR in the TAL and in intercalated cells. The recent generation of a transgenic mouse model with floxed alleles for the MR may allow further addressing the cell type-specific roles of the MR (46).

Cellular localization of GR. The GR is thought to be expressed in virtually all cell types of the mammalian organism. Hence, it was surprising that immunohistochemical studies failed to detect the GR in proximal tubules (13), although mRNA analysis (10, 53) and autoradiographic binding studies (15, 33) clearly indicated that the GR is present in proximal tubules like in all other renal epithelial cells. To explain these findings, Farman and coworkers (13) speculated that the proximal tubule may express a GR isoform that their monoclonal mouse antibody may not bind to because the recognized epitope is either lacking or masked by interacting proteins, for example. In the present study, we used two rabbit polyclonal antibodies directed against different epitopes and could now unequivocally demonstrate that the GR is abundant at the protein level in all renal cell types, including proximal tubular cells. Interestingly, in proximal tubules the GR accumulated not only in cell nuclei, but also in the region of the subapical compartment (SAC). The SAC is formed by a network of tubulovesicular structures involved in endocytotic and exocytotic trafficking of membrane vesicles and membrane proteins (28, 29). Moreover, the SAC participates to receptor-mediated endocytosis of plasma proteins. In fact, there is increasing evidence that steroid hormones may enter certain cell types not only by free diffusion but also by receptor-mediated endocytosis of their carrier proteins (59). Notably, circulating corticosteroids are bound >90% to corticosteroid-binding globulin (CBG), which has a molecular mass of 55 kDa (27), which is just below the 60 kDa cut-off of the glomerular filter. There is experimental evidence for glomerular filtration of plasma protein-bound corticosteroids (17), and binding of CBG to renal cell membranes (50) and localization of CBG in the subapical region of proximal tubule cells have been demonstrated (49). Independent of the underlying uptake mechanism and the subsequent fate of the corticosteroid hormones, the strong dependence of the subapical localization of the GR on the presence of circulating corticosteroids (fig. 7) suggests that the GR is involved in the reuptake of corticosteroids filtered at the glomeruli, which may impact on the bioavailability of the hormones locally at the level of the proximal tubule, but also along the downstream nephron portions.

Corticosteroid-dependent regulation of MR and GR nuclear localization. Our data show that corticosteroids control the nuclear localization of MR and GR not only in cell systems in vitro, as previously reported (16, 43), but also in the kidney in vivo. By and large, the present findings support the classic concepts of MR and GR regulation by corticosteroid hormones. However, with respect to the ASDN, our data indicate that the current textbook dogma that mineralocorticoids act mainly via the MR, which is protected from activation by glucocorticoids due to the action of 11β-HSD2, may need additional refinement. Using a set of experiments in intact rats on different sodium intakes and in ADX rats treated with different corticosterone replacement doses, we provide evi-
dence that in the kidney in vivo it is not the MR, but mainly the GR, the subcellular localization of which is controlled by physiological variations in plasma aldosterone levels and that it is mainly the GR which is protected by the 11β-HSD2 from circulating corticosteroids. This conclusion may surprise at first glance, but it is fully compatible with the current knowledge about the physiological plasma concentrations of aldosterone and corticosterone, the K_d values of MR and GR, and the presumed activity of 11β-HSD2. Under standard conditions, rats have plasma concentrations of aldosterone and corticosterone in the range of ~1 and 1,000 nM, respectively (25), whereby only part of the corticosterone is thought to be active since most is bound to CBG. The MR and GR bind both hormones with more or less similar affinities, but with clearly different K_d values [i.e., MR (K_d 0.5–3 nM) and GR (K_d 20–65 nM)] (1). As pointed out by Funder (18), it is well possible that 11β-HSD2 does not achieve a 100% inactivation of corticosterone before it can bind to the MR and GR. Even if 99%
efficiency is achieved, the remaining intracellular corticosterone concentrations in ASDN cells are likely still high enough to bind to and activate most of the MR, but only a small portion of the GR and hence leave it available for activation by aldosterone. Of course, immunofluorescence is not sensitive enough to exclude a further increase in the nuclear localization of MR with increasing plasma aldosterone levels. Moreover, it remains possible that changed aldosterone levels control the
binding of MR to hormone-responsive elements of target genes independently of effects on subcellular localization. In this context, the differential subcellular localization of MR and GR in ASDN cells may even provide an important means by which mineralocorticoid specificity is conferred to the MR. The preferential nuclear localization of the MR under physiological conditions (i.e., with intact adrenal glands) would require that cortisolosterone diffuses through the cell before it can bind to the MR. This may increase the chance that the 11β-HSD2 can fully inactivate cortisolosterone before it reaches the nucleus. Thus nuclear MR may respond nicely to physiological variations in aldosterone while the GR is shuffling back and forth, linked to altered hormone levels. Mineralocorticoid selectivity might be conferred to the MR also independently of 11β-HSD2 by a functional preference of the receptor for aldosterone, as indicated by findings in cell culture assays (38) and in vivo experiments (26).

Role of MR and GR in aldosterone action. The coexpression and differential regulation of MR and GR in ASDN cells raise the apparent question of the role of both receptors and whether both receptors are required for the physiological response to aldosterone. Geering and coworkers (22) were the first to suggest that the occupancy of both receptors is necessary to achieve a full biological response. Although there is evidence for some functional compensation of the GR in MR−/-- mice (48), both receptors appear to be important for the control of sodium transport in the ASDN, as indicated by recent findings in mouse models with targeted inactivation of the MR in the renal collecting system (46), overexpression of the GR in the collecting duct (42), or with pharmacological inhibition of either the MR or the GR in ACTH-induced Cushing’s syndrome (2). Based on recent experiments in a mouse collecting duct cell line, Gaeggeler and coworkers (19) came up with the idea that the exclusive occupancy of MR provides a limited increase in sodium transport which is adequate for (circadian) maintenance requirements under low plasma aldosterone levels, while occupancy of both receptors would lead to the maximal response needed for maximum sodium retention under severe salt restriction and/or stress. This model, derived from in vitro studies, would be fully compatible with our in vivo findings on the regulation of the subcellular localization of MR and GR along the nephron. Differential dimerization of MR and GR may contribute to a graded response of the ASDN to altered plasma aldosterone levels (47). In fact, dimerization of steroid receptors is required for binding of the ligand-bound receptor complexes to hormone-response elements and activation of gene transcription. The MR and GR can either homodimerize (MR-MR) or heterodimerize (MR-GR). Experiments in which variable proportions of each receptor cDNA were transfected to test their efficiency on a reporter gene indicated (14). In some cases, transactivation synergy was evidenced on MR and GR cotransfection, whereas, in other cases, it was shown that MR inhibits GR transcriptional activity. In addition, heterodimers might be formed with only one receptor entity in a liganded state, increasing the diversity of steroid hormone effects (14). Thus a differential regulation of receptor translocation to the cell nucleus would allow for a differential regulation of receptor homo- and/or heterodimerization, which could contribute to the complexity of corticosteroid hormone action in the kidney.

In conclusion, our study provides a detailed analysis of the cellular and subcellular localization of the MR and GR along the nephron and supports the concept that ligand-induced nuclear translocation of MR and GR are important components of MR and GR regulation in the kidney. In the ASDN, 11β-HSD2 protects mainly the GR from binding of cortisolosterone and leaves it available for activation and nuclear redistribution in response to increased plasma aldosterone levels. Differential regulation of MR and GR may alter the level of heterodimerization of the receptors and hence may contribute to the complexity of the corticosteroid effects on ASDN function.

ACKNOWLEDGMENTS

We gratefully acknowledge the advice of J.-D. Horisberger for the experimental design of the aldosterone and cortisolosterone infusion experiments in ADX rats. We thank John A. Cidlowski for a suggestion to include also the GR antibody PA1-511A (Affinity Bioreagents/Thermoscientific) in our experiments. We thank Felix J. Frey for helpful comments on the manuscript and Gunther Schütz for giving access to kidneys from GR-deficient mice.

GRANTS

The study was supported by grants from the Swiss National Science Foundation 310000-1222431 (to J. Loffing), SPUM: FN 33CM30-124087 (to D. Ackermann), and the Novartis Foundation (to J. Loffing).

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the authors.

REFERENCES

