Folic acid supplementation inhibits NADPH oxidase-mediated superoxide anion production in the kidney

Sun-Young Hwang,1,2 Yaw L. Siow,2,3,4 Kathy K. W. Au-Yeung,3 James House,1 and Karmin O1,2,3
1Department of Animal Science, 2Department of Physiology, University of Manitoba, Manitoba; and 3Canadian Centre for Agri-food Research in Health and Medicine, St. Boniface Hospital Research Centre, 4Agriculture and Agri-Food Canada, Winnipeg, Canada

Submitted 13 May 2010; accepted in final form 21 October 2010

Hwang S-Y, Siow YL, Au-Yeung KK, House J, O K. Folic acid supplementation inhibits NADPH oxidase-mediated superoxide anion production in the kidney. Am J Physiol Renal Physiol 300: F189–F198, 2011. First published October 27, 2010; doi:10.1152/ajprenal.00272.2010.—Hyperhomocysteinemia, a condition of elevated blood homocysteine (Hcy) levels, is a metabolic disease. It is a common clinical finding in patients with chronic kidney disease and occurs almost uniformly in patients with end-stage renal disease. Hyperhomocysteinemia is also a risk factor for cardiovascular disease. Our recent studies indicate that hyperhomocysteinemia can lead to renal injury by inducing oxidative stress. Oxidative stress is one of the important mechanisms contributing to Hcy-induced tissue injury. Folic acid supplementation is regarded as a promising approach for prevention and treatment of cardiovascular disease associated with hyperhomocysteinemia due to its Hcy-lowering effect. However, its effect on the kidney is not clear.

The aim of this study was to examine the effect of folic acid supplementation on Hcy-induced superoxide anion production via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in the kidney during hyperhomocysteinemia. Hyperhomocysteinemia was induced in male Sprague-Dawley rats fed a high-methionine diet for 12 wk with or without folic acid supplementation. A group of rats fed a regular diet was used as control. There was a significant increase in levels of superoxide anions and lipid peroxides in kidneys isolated from hyperhomocysteinemic rats. Activation of NADPH oxidase was responsible for hyperhomocysteinemia-induced oxidative stress in the kidney. Folic acid supplementation effectively antagonized hyperhomocysteinemia-induced oxidative stress via its Hcy-lowering and Hcy-independent effect. In vitro study also showed that 5-methyltetrahydrofolate, an active form of folate, effectively reduced Hcy-induced superoxide anion production via NADPH oxidase. Xanthine oxidase activity was increased and superoxide dismutase (SOD) activity was decreased in the kidney of hyperhomocysteinemic rats, which might also contribute to an elevation of superoxide anion level in the kidney. Folic acid supplementation attenuated xanthine oxidase activity and restored SOD activity in the kidney of hyperhomocysteinemic rats. These results suggest that folic acid supplementation may offer renal protective effect against oxidative stress.

Homocysteine; oxidative stress

Hyperhomocysteinemia is a metabolic disorder that is characterized by an elevation of homocysteine (Hcy) level in the circulation. It is a common clinical finding in patients with chronic kidney disease and occurs almost uniformly in patients with end-stage renal disease (ESRD). Although kidney dysfunction is a common factor causing hyperhomocysteinemia, the adverse effect of Hcy on kidney function is not well-documented. Recent epidemiological investigations identified a positive association between an elevation of Hcy level in the blood and the development of chronic kidney disease in the general population (21). Hcy is a sulfhydryl-containing amino acid formed during the metabolism of methionine to cysteine. Mechanisms of Hcy-induced cardiovascular diseases have been studied extensively in the recent decade. Hcy, at pathological concentrations, elicits inflammatory responses and impairs endothelial function via activation of transcription factor such as nuclear factor-κB (NF-κB), inducing oxidative stress and chemokine expression causing monocyte accumulation in the vascular endothelium. Recent studies indicate that Hcy, at pathological levels, can cause kidney injury (13, 16, 17, 21, 38). In contrast to the cardiovascular system, the mechanisms by which hyperhomocysteinemia may exert adverse effects on the kidney are not well-identified. Hyperhomocysteinemia is now thought to be an independent risk factor both in the progression of kidney disease and in the development of cardiovascular complications related to ESRD.

Many risk factors causing kidney injury and cardiovascular diseases share a common feature of generating intracellular reactive oxygen species (ROS) causing oxidative stress. Superoxide anion, a redox signaling molecule that plays a critical role in physiologic and pathologic processes, is a highly reactive oxygen free radical that can interact with nitric oxide to form another highly reactive free radical named peroxynitrite that, in turn, causes extensive protein tyrosine nitration and mediates iron-catalyzed lipid peroxidation. Nicotinamide adenine dinucleotide phosphate (NADPH)-dependent oxidase is primarily responsible for intracellular superoxide anion generation. It is a major source of superoxide anion generation in the kidney (4, 10, 11, 25). NADPH oxidase comprises membrane-bound components, termed cytochrome b55 (gp91phox and p22phox subunits), and cytosolic components (p47phox, p67phox, p40phox, and Rac 1/2 subunits). Under normal conditions, a small amount of superoxide anions generated inside cells can be scavenged by cellular antioxidant defense mechanisms. However, when there is an overproduction and insufficient removal of superoxide anions, oxidative stress occurs. The gp91phox is a catalytic subunit of the enzyme. Several homologs of gp91phox have been identified and are termed NADPH oxidase (NOX) proteins. Among the NOX proteins, NOX4 was first characterized as a kidney NADPH oxidase and is also known as Renox, which has 39% identity to NOX2 (analogue of gp91phox). It has been shown that NOX4 is a major source of superoxide anions produced in the kidney and plays an important role in the development of kidney disease (9, 25).

Our recent study showed that hyperhomocysteinemia can increase inducible nitric oxide synthase (iNOS) expression in the kidney leading to an increased NO production in rat kidneys.
As a consequence, nitrotyrosine/nitrated proteins are formed in the kidney tissue (38). It is plausible that the generation of superoxide anion might also be elevated in the kidney during hyperhomocysteinemia.

Folic acid is a synthetic form of the naturally occurring folate that is a water-soluble B vitamin. The active metabolite of folic acid is 5-methyltetrahydrofolate (5-MTHF). Folate plays an important role in regulating Hcy metabolism. Hcy can be metabolized via two major pathways, namely, the remethylation pathway and the transsulfuration pathway. In the remethylation pathway, Hcy can be converted to methionine catalyzed by methionine synthase with folate as a cosubstrate. In the transsulfuration pathway, Hcy is irreversibly converted to cystathionine by cystathionine-β-synthase. Factors that interrupt the steps in Hcy metabolic pathways can cause an increase in cellular Hcy levels and lead to its elevation in the blood (14, 22). Although folate reduces the concentration of plasma Hcy and has a protective potential against cardiovascular diseases, recent studies have suggested that folate may exert protective effects independent of Hcy lowering. The aim of the present study was to investigate the effect of folic acid on Hcy-induced superoxide anion production via NADPH oxidase activation and underlying mechanism of such an effect in the kidney of hyperhomocysteinemic rats and human kidney proximal tubular cells.

MATERIALS AND METHODS

Animal model. Male Sprague-Dawley rats (Charles River Laboratories, Wilmington, MA) aged 8 wk were divided into 6 groups and maintained for 12 wk on the following diets: 1) regular diet (control), consisting of Lab Diet Rat Diet 5012 (PMI Nutrition International, St. Louis, MO), 2) high-methionine (Met) diet, consisting of regular diet plus 1.7% (wt/wt) Met, 3) high-Met plus folate acid diet, consisting of regular diet plus 1.7% (wt/wt) Met and 0.25% (wt/wt) folate acid (Met + folate acid), 4) in one set of experiments, high-Met-fed rats were injected with 4 mg/kg of apocynin, an inhibitor of NADPH oxidase (Met + apocynin; Calbiochem, San Diego, CA), intraepidermally once a day for 7 days before euthanasia, 5) a regular diet plus 0.25% (wt/wt) folate acid (control + folate acid), and 6) apocynin (4 mg/kg) was given to rats fed a regular diet (control + apocynin) for 7 days intraperitoneally before euthanasia. After being on the experimental diets for 12 wk, rats were euthanized by injection of a high dose of pentobarbital sodium intraperitoneally. The portion of the rat kidney used for assays including PCR consisted of cortex and medulla.

Results from our previous studies demonstrated that hyperhomocysteinemia could be induced in rats by feeding a high-Met diet (13, 31, 22). Although folate reduces the concentration of plasma Hcy and has a protective potential against cardiovascular diseases, recent studies have suggested that folate may exert protective effects independent of Hcy lowering. The aim of the present study was to investigate the effect of folic acid on Hcy-induced superoxide anion production via NADPH oxidase activation and underlying mechanism of such an effect in the kidney of hyperhomocysteinemic rats and human kidney proximal tubular cells.
ward) 5′-GTCCTGACATTGCTGTCTT-3′ and (reverse) 5′-GAA-
CACCTCGCACCCTGAT -3′, and those for human GAPDH were
(forward) 5′-ATCACCTGCTGCTTACTGC-3′ and (reverse) 5′-
GTCAGGTCCACACTAGTCA CAC-3′. All primers were synthesized by
Invitrogen. The relative changes in mRNA expression were determined
by the fold change analysis in which the degree of change = 2−△△Ct,
where Ct = (Ct target gene − CtGAPDH) treatment − (Ct target gene −
CtGAPDH) control (19). Ct was the cycle number at which the fluorescence
signal crossed the threshold, which was determined by iQ5 Optical
System software (version 2: Bio-Rad).

Determination of intracellular superoxide anion levels. The intra-
cellular superoxide anion level was measured by the nitroblue teta-zolium (NBT) reduction assay (1, 29). In brief, cells were incubated
in Krebs-Henseleit buffer in the presence of 1.0 mg/ml NBT for 60
min. The formazan generated by the reduction of NBT in the presence
of superoxide anion was proportional to the amount of superoxide
anion generated intracellularly. At the end of the incubation period,
the culture medium was removed and the cells were washed with
prewarmed (37°C) Hank’s balanced salt solution. Cells were lysed
with a phosphate buffer (80 mmol/l, pH 7.8) containing 5% sodium
dodecyl sulphate and 0.45% gelatin. The cell lysate was centrifuged
for 5 min at 13,000 g. The supernatant was used for the measure-
ment of the absorbance at 540 nm (formazan) and 450 nm. The
calculation of relative concentration of superoxide anion was based
on the amount of formazan formed.

Transfection of cells with NOX4 and p22phox siRNAs. Cells were
transfected with NOX4 and p22phox siRNA duplex oligoribonucleo-
tides (Stealth RNAi, Invitrogen). Tubular cells were seeded in six-
well plates and transfected with NOX4 and p22phox siRNAs according
to the manufacturer’s instruction. For a negative control, cells were
transfected with Stealth RNAi negative control (Invitrogen) consisting of a scrambled sequence that was unable to inhibit gene expression. At 48 h after transfection, cells were incubated with or without Hcy for 12 h, NOX4 and p22phox mRNA, and the intracellular superoxide
anion level was measured.

Histological staining. A portion of the kidney (cortex and med-
ullar) was immersion-fixed in 10% neutral-buffered formalin over-
night followed by embedding in paraffin. Sequential 5-μm paraffin-
embedded cross sections were prepared. Kidney sections were placed
in xylene to remove the paraffin and stained with hematoxylin and
eosin staining to examine histological changes in the kidney (32). Images were acquired using a Zeiss Axioskop2 microscope equipped
with an Axiovision digital camera. Using a camera mounted on
microscope, slides were analyzed at ×200 magnification. Mean glo-
merular volume, by measuring the maximum glomerular diameter of
20 randomly chosen glomeruli (n = 4/group) per kidney, was
determined. The radius was used to estimate glomerular volume
using the formula followed by: mean glomerular volume =
β/K(πr2)3/2. The value of the coefficients β and K is based on
assumptions made for the maximum diameter of spheres (β =
1.38) and the distribution bias of section location (K = 1.10) (12).

Statistical analysis. The results were analyzed using one-way
ANOVA followed by Newman-Keuls multiple comparison test. Data
were presented as means ± SE. The level of statistical significance
was set at P < 0.05.

RESULTS

Effect of folic acid on lipid peroxidation in the kidney during
hyperhomocysteinemia. Rats that were fed a high-Met diet for 12
wk developed hyperhomocysteinemia. Those rats had a much
higher level of serum tHcy than the control group (Fig. 1A). Supplementation of folic acid to rats fed a high-Met diet significantly lowered the serum tHcy levels (Fig. 1A). These results suggested that feeding a high-Met diet for 12 wk was
able to induce hyperhomocysteinemia in rats. Next, the degree
of lipid peroxidation in the kidney was examined by measuring
tissue MDA level, an indicator of lipid peroxidation. The MDA
level was significantly elevated in kidneys of hyperhomocy-
steinemic rats, indicating an increased lipid peroxidation in the
kidney (Fig. 1B). Folic acid supplementation effectively re-
duced the MDA level in the kidney (Fig. 1B). Administration
of apocynin, an inhibitor for NADPH oxidase, to hyperhomo-
cysteinemic rats also reduced the MDA level in kidneys of
hyperhomocysteinemic rats (Fig. 1B). Folic acid supplementation
or apocynin injection to rats fed a regular diet did not
affect the serum Hcy level (Fig. 1A) and the kidney MDA level
(Fig. 1B). These results suggested that NADPH oxidase might
be involved in increased free radical generation in the kidney
leading to lipid peroxidation in hyperhomocysteinemic rats.

Effect of folic acid on NADPH oxidase activation in the
kidney during hyperhomocysteinemia. The activity of NADPH
oxidase was significantly elevated in kidneys of hyperhomo-
cysteinemic rats (Fig. 2A). Folic acid supplementation reduced
NADPH oxidase activity in kidneys of hyperhomocysteinemic rats (Fig. 2A). Treatment of hyperhomocysteinemic rats with
apocynin, NADPH oxidase inhibitor, abolished NADPH oxidase activity in the kidney (Fig. 2A). Further analysis revealed that the mRNA levels of NADPH oxidase subunits, NOX4 and p22phox, were significantly elevated in the same kidney tissue (Fig. 2B and C). These results suggested that the increased expression of NOX4 and p22phox might contribute to Hcy-induced activation of NADPH oxidase leading to increased free radical generation in the kidney of hyperhomocysteinemic rats. Folic acid supplementation effectively reduced the mRNA level of NOX4 and p22phox in the kidney of hyperhomocysteinemic rats (Fig. 2B). Such an inhibitory effect of folic acid might contribute to a reduction of NADPH oxidase activity in those rats (Fig. 2A). Folic acid supplementation or apocynin injection to rats fed a regular diet did not affect the basal levels of NADPH oxidase activity, NOX4, and p22phox mRNA expression (Fig. 2). Another superoxide-generating enzyme xanthine oxidase was also significantly increased in kidneys of hyperhomocysteinemic rats while folic acid supplementation had an inhibitory effect (Fig. 3A). In addition, an antioxidant enzyme SOD activity was significantly decreased in the kidney tissue of hyperhomocysteinemic rats and folic acid supplementation partially restored SOD activity (Fig. 3B). Mitochondria could be another source of superoxide overproduction in the kidney of hyperhomocysteinemic rats leading to oxidative stress. In one set of experiments, NADPH oxidase activity was measured in the cellular fraction that was free of mitochondria. The activity of NADPH oxidase was significantly elevated in the mitochondria-free fraction prepared from kidneys of hyperhomocysteinemic rats (Fig. 3C). Folic acid supplementation reduced NADPH oxidase activity in this fraction (Fig. 3C).

Fig. 2. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and mRNA levels of NADPH oxidase subunits in rat kidneys. Rats were fed with the same diets as in Fig. 1 for 12 wk. In one set of experiments, apocynin (4 mg/kg daily ip) was given to rats fed a high-Met diet (Met + apocynin) or fed a regular diet (control + apocynin) for 7 days before euthanasia. A: NADPH oxidase activity expressed as the amount of superoxide anion produced per mg of protein per min was measured by lucigenin chemiluminescence’s assay. NOX4 (B) mRNA and p22phox (C) mRNA levels were measured using a real-time PCR detection system. Results were expressed as means ± SE (n = 6). *P < 0.05 compared with control values. #P < 0.05 compared with values of high-Met-fed group.

Fig. 3. Xanthine oxidase activity, superoxide dismutase (SOD) activity, and NADPH oxidase activity in rat kidneys. Rats were fed with the following diets for 12 wk: a regular diet (control), a high-Met diet (1.7% Met), or a high-Met diet (1.7% Met) + folic acid (0.25%; Met + folic acid). Xanthine oxidase activity (A) and SOD activity (B) were measured in the kidney tissue. C: NADPH oxidase activity was measured in mitochondria-free fraction prepared from the kidney. Results were expressed as means ± SE (n = 6). *P < 0.05 compared with control values. #P < 0.05 compared with values of high-Met-fed group.
Effect of Hcy on NADPH oxidase-mediated superoxide anion generation in tubular cells. The effect of Hcy on superoxide anion generation was further examined in human kidney proximal tubular cells. Cells were incubated with Hcy (25–250 μM) for 12 h. The intracellular level of superoxide anion was significantly increased in cells treated with Hcy at 50–250 μM (Fig. 4A). In the rest of cell culture experiments, Hcy at 100 μM was added to the culture medium. Pretreatment of cells with NADPH oxidase inhibitor (apocynin) for 15 min followed by incubation with Hcy reduced the intracellular level of superoxide anion (Fig. 4B). Apocynin treatment did not affect the basal level of intracellular superoxide anion (Fig. 4B). Next, to examine whether other superoxide-generating sources were also activated on Hcy treatment, several inhibitors of superoxide producing enzymes were added to the culture medium. Pretreatment of cells with oxypurinol (an inhibitor for xanthine oxidase) also abolished Hcy-induced elevation of intracellular superoxide levels (Fig. 4C), indicating that the xanthine oxidase might be involved in Hcy-induced superoxide production in tubular cells. On the other hand, pretreatment of cells with rotenone (an inhibitor for mitochondrial respiratory chain complex I) or cimetidine (an inhibitor for cytochrome P-450) did not affect intracellular superoxide anion levels on Hcy treatment (Fig. 4C). The NADPH oxidase activity was significantly increased in cells incubated with Hcy (Fig. 4D). These results suggested that activation of NADPH oxidase was responsible for Hcy-induced superoxide anion generation in tubular cells. A discrepancy between changes in the NADPH oxidase activity (2-fold increase in Hcy-treated cells) and superoxide levels (~40% increase in Hcy-treated cells) might be due to a rapid metabolism of superoxide anion in cultured cells or assay sensitivity for measuring the enzyme activity and superoxide anion.

To investigate the mechanism of NADPH oxidase activation in tubular cells, the mRNA levels of NADPH oxidase subunits were measured. The expression of NOX4 and p22phox was significantly elevated in tubular cells incubated with Hcy (Fig. 5, A and B). To further examine the role of NOX4 and p22phox in Hcy-induced NADPH oxidase activation, tubular cells were transfected with NOX4 and p22phox siRNA, respectively. Transfection of cells with NOX4 siRNA or p22phox siRNA not only inhibited NOX4 (Fig. 6A) and p22phox (Fig. 6B) expression but also abolished Hcy-induced elevation of superoxide anion level in tubular cells (Fig. 6C). In accordance with the intracellular superoxide anion levels, transfection of cells with NOX4 siRNA or p22phox siRNA abolished the stimulatory effect of Hcy on NADPH oxidase activity while transfection of cells scramble siRNA did not affect the NADPH oxidase activity.
activity. These results suggested that Hcy-induced activation of NADPH oxidase was mainly mediated via increased NOX4 and p22phox expression in tubular cells.

Effect of folic acid on NADPH oxidase-mediated superoxide anion generation in tubular cells. The effect of folic acid on Hcy-induced superoxide anion generation was examined in tubular cells. Incubation of tubular cells with 5-MTHF, an active form of folate, abolished Hcy-induced NADPH oxidase activation (Fig. 4D) and reduced the intracellular level of superoxide anion (Fig. 4C). Incubation of cells with 5-MTHF also reduced the mRNA levels of NOX4 and p22phox (Fig. 5, A and B). Hcy can be remethylated to Met via the enzymatic action of Met synthase which utilizes 5-MTHF as a methyl donor. Since folate in the form of 5-MTHF can methylate Hcy to Met, it has been used in Hcy-lowering therapy. Treatment of control cells with 5-MTHF did not affect the basal level of intracellular superoxide anion (Fig. 4B) or NOX4 and p22phox expression (Fig. 5). Next, to examine whether the reduction of superoxide anion by 5-MTHF was due to its Hcy-lowering effect, lipopolysaccharide (LPS) (23) was added to tubular cells to induce NADPH oxidase activity and superoxide anion generation. LPS treatment caused a significant elevation of NADPH oxidase activity (Fig. 7A) and intracellular superoxide anion level (Fig. 7B). Incubation of tubular cells with 5-MTHF effectively reduced the LPS-induced elevation of NADPH oxidase activity (Fig. 7A) and intracellular superoxide anion level (Fig. 7B). These results suggested that the inhibitory effect of 5-MTHF on Hcy-induced superoxide anion generation in tubular cells was not merely dependent on Hcy reduction.

Effect of hyperhomocysteinemia and folic acid supplementation on kidney morphology. Histological staining was performed to examine the effect of hyperhomocysteinemia and folic acid supplementation on morphological changes in the kidney. The glomerular size was significantly increased in kidneys of hyperhomocysteinemic rats as indicated by larger mean glomerular volumes (Fig. 8). Folic acid supplementation reduced the glomerular size in rats fed a high-Met diet (Fig. 8). An increase in the glomerular size might be one of the histological changes associated with the glomerular hypertrophy. Our results demonstrated that folic acid supplementation not only reduced oxidative stress but also improved the size of glomeruli in the kidney.

Fig. 5. Measurement of NOX4 and p22phox mRNA levels in tubular cells. Proximal tubular cells were incubated in the absence (control) or presence of Hcy (100 μM) for 12 h. In one set of experiments, cells were preincubated with 5-MTHF (500 ng) for 15 min followed by incubation in the absence of Hcy (control + 5-MTHF) or in the presence of Hcy (100 μM) for 12 h. NOX4 (A) mRNA and p22phox (B) mRNA levels were measured. Results were expressed as means ± SE (n = 4–6). *P < 0.05 compared with control values. #P < 0.05 compared with values of Hcy-treated group.

Fig. 6. Determination of mRNA levels of NADPH oxidase subunits and superoxide anion production in siRNA-transfected tubular cells. Proximal tubular cells were transfected with NOX4 and p22phox siRNAs or with a negative control siRNA. Transfected cells were incubated for 12 h in the absence (control) or presence of Hcy (100 μM). NOX4 (A) and p22phox (B) mRNA levels were measured. C. superoxide anion levels were determined by NBT reduction assay. The levels of superoxide anions in transfected cells without Hcy treatment were measured. Results were expressed as means ± SE (n = 4–6). *P < 0.05 compared with control values.
DISCUSSION

The present study clearly demonstrated that NADPH oxidase plays an important role in superoxide anion generation in the kidney leading to increased lipid peroxidation during hyperhomocysteinemia. Folic acid supplementation could suppress NADPH oxidase activity by inhibiting the expression of NOX4 and p22phox. Such an inhibitory effect alleviates oxidative stress in the kidney of hyperhomocysteinemic rats.

It is increasingly recognized that oxidative stress is an important factor in the development and progression of kidney disease. NADPH oxidase is expressed in phagocytic cells as well as in nonphagocytic cells. Excessive activation of NADPH oxidase can lead to overproduction of superoxide anion, which is linked to tissue injury due to oxidative stress. Several lines of evidence from the present study suggested that NADPH oxidase was activated in the kidney of hyperhomocysteinemic rats, leading to increased renal lipid peroxidation. First, NADPH oxidase activity was markedly increased in the kidney during hyperhomocysteinemia. Such an elevation of the oxidase activity was a result of increased expression of NOX4 and p22phox subunits in the kidney. Second, the level of lipid peroxides in the kidney of hyperhomocysteinemic rats was found to be significantly elevated, indicating that oxidative stress occurred. Administration of a known NADPH oxidase inhibitor, apocynin, not only reduced the NADPH oxidase activity to the basal level but also effectively inhibited lipid peroxidation in the kidneys of those rats. These results suggested that NADPH oxidase was likely involved in renal oxidative stress during hyperhomocysteinemia. Third, the involvement of NADPH oxidase was further confirmed by using siRNA transfection technique. Transfection of tubular cells with NOX4 siRNA or p22phox siRNA effectively inhibited the expression of these subunits as well as abolished Hcy-induced elevation of intracellular superoxide levels. Taken together, these results indicate that NADPH oxidase-dependent superoxide anion generation plays a major role in Hcy-induced oxidative stress in the kidney during hyperhomocysteinemia.

Apart from NADPH oxidase, superoxide anion might also be derived from other intracellular sources. To investigate the effect of Hcy on other superoxide anion-generating sources, several inhibitors of superoxide producing enzymes were added to cultured tubular cells. Pretreatment of cells with an inhibitor for xanthine oxidase also abolished Hcy-induced elevation of intracellular superoxide levels. Furthermore, xanthine oxidase activity was found to be significantly increased in the kidney tissue of hyperhomocysteinemic rats. These results suggested that xanthine oxidase might be involved in Hcy-induced superoxide production in kidney cells. On the other hand, pretreatment of tubular cells with an inhibitor for mitochondrial respiratory chain complex I or an inhibitor for cytochrome P-450 did not significantly affect intracellular superoxide anion levels on Hcy treatment. In addition, NADPH oxidase activity was elevated in the mitochondria-free fraction prepared from the kidney of hyperhomocysteinemic rats. These results suggested that generation of superoxide anion by mitochondria might not be significantly altered in the kidney of hyperhomocysteinemic rat. However, it could not exclude the possibility that prolonged hyperhomocysteinemia (longer than 12 wk) might affect superoxide anion generation by mitochondria in the kidney tissue. Our results also demonstrated that the activity of antioxidant enzyme SOD was markedly decreased in the kidney of hyperhomocysteinemic rats. Taken together, those results suggested that an increase in NADPH oxidase and xanthine oxidase activities combined with a reduction of SOD activity might have contributed to increased oxidative stress in the kidney of hyperhomocysteinemic rats.

Many risk factors causing kidney injury share a common feature of generating intracellular free radicals causing oxidative stress. A recent study showed an increase in NOX4 and p22phox expression in the kidney of streptozotocin-induced diabetic rats (7). It has been suggested that increased NADPH oxidase-mediated superoxide generation contributes to the development of diabetic nephropathy (7). It has also been shown that Hcy, at elevated levels, can induce inflammatory response and apoptosis in kidney cells and animal models (24, 33–35). Hcy treatment was shown to increase collagen production and cell proliferation in rat mesangial cells (33). Such a stimulatory effect by Hcy could be blocked by inhibition of NADPH oxidase activation (33). Recently, the deletion of the gp91phox gene in mice was reported to protect hyperhomocysteinemia-induced kidney cell injury (36). In a rat model of hyperhomocysteinemia induced by folate-free diet, glomerulosclerosis was characterized by enhanced oxidative stress, mesangial
expansion, podocyte dysfunction, and fibrosis. When these rats with hyperhomocysteinemia were treated with apocynin, an inhibitor of NADPH oxidase, the glomerular injury was attenuated (34, 35). In a recent study, Zhang et al. (37) demonstrated that NMDA receptor mediates NADPH oxidase-dependent superoxide anion production induced by Hcy in mesangial cells, which may contribute to hyperhomocysteinemia-induced glomerulosclerosis. Our recent study demonstrated that hyperhomocysteinemia causes activation of NF-κB, induction of iNOS, and chemokine expression in rat kidneys (13, 38). NF-κB is a transcriptional factor that plays an important role in regulating gene expression of various inflammatory factors in the kidney and is a redox-sensitive transcription factor (13, 38). We also observed that ROS can induce phosphorylation and degradation of IkB, an inhibitory protein normally associated with NF-κB, leading to NF-κB activation in endothelial cells and in macrophages (1, 29). It is evident that NADPH oxidase plays an important role in Hcy-mediated kidney injury by producing NADPH-dependent superoxide anions. Regulation of its gene expression may offer a renal protective effect against oxidative stress-related injury.

There is an inverse correlation between folate and Hcy levels in the circulation. The 5-MTHF that is formed from folic acid via the action of 5, 10-methylenetetrahydrofolate reductase is the active form of folic acid. 5-MTHF serves as a cosubstrate in the remethylation pathway catalyzed by Met synthase to convert Hcy to Met. Therefore, folic acid supplementation is regarded as a promising approach in reducing blood Hcy levels. However, data from large prospective randomized clinical trials failed to demonstrate a beneficial effect of folic acid supplementation in reducing the mortality of cardiovascular disease (5, 20). In the HOPE-2 and NORVIT secondary prevention studies, participants were more than 55 years of age with cardiovascular disease, hypertension, myocardial infarction, and diabetes in which cardiovascular damaging effects might be irreversible. This might contribute to the observation that despite a reduction in plasma Hcy levels by folic acid supplementation in conjunction with vitamin B6 and B12, there was no significant cardiovascular benefit. However, the same studies revealed that Hcy lowering with folic acid in conjunction with vitamin B6 and B12 decreased the risk of stroke.

In the present study, folic acid supplementation effectively abolished hyperhomocysteinemia-induced oxidative stress in the kidney by inhibition of NADPH oxidase activation. Such a renal protective effect might be mediated, in part, via a reduction of Hcy level by folic acid. The level of serum Hcy was significantly reduced in rats fed with a high-Met diet supplemented with excess folic acid. However, the level of serum Hcy was still considerably higher (4-fold higher) in this group of rats compared with the control group. Results obtained from the present study provided evidence that the inhibitory effect of folic acid on NADPH oxidase activation was not merely due to its ability to reduce the Hcy level. When tubular cells were incubated with Hcy or LPS, the intracellular levels of superoxide anions were significantly elevated. Incubation of cells with 5-MTHF effectively reduced the intracellular superoxide anions to the basal level not only in Hcy-treated cells but also in LPS-treated cells. A recent study demonstrated that folic acid supplementation improves endothelial function in diabetic rabbits through the inhibition of intravascular oxidative stress, expansion, podocyte dysfunction, and fibrosis.

Fig. 8. Measurement of mean glomerular volume (MGV) in rat kidneys. Kidneys were collected from rats fed with following diets for 12 wk: a regular diet (control), a high-Met diet (1.7% Met), or a high-Met diet + folic acid (0.25; Met + folic acid). A: kidney morphology was examined by hematoxylin and eosin staining. B: glomerular size in rat kidneys was determined at ×200 magnification (arrows point to glomeruli). Results were expressed as means ± SE (n = 4). *P < 0.05 compared with control values. #P < 0.05 compared with values of high-Met-fed group.
which is independent of Hcy-lowering effect (26). In our previous study, folic acid supplementation was shown to reduce oxidative stress and alleviate liver injury in hyperhomocysteinemic rats (30). Moreover, we also observed that folic acid supplementation could prevent dietary-induced hyperhomocysteinemia in rats abolishing Hcy-stimulated chemokine expression in the aortic endothelium and by inhibiting Hcy-induced NADPH oxidase activation leading to a reduction of superoxide anion generation in macrophages (2, 28). Superoxide anion can react with NO to form peroxynitrite which is a potent oxidant and can cause lipid peroxidation. Folic acid supplementation also attenuated xanthine oxidase activity and restored SOD activity in the kidney of hyperhomocysteinemic rats. Taken together, these results suggested that folic acid supplementation might offer a protective effect against oxidative stress via a reduction of Hcy levels as well as regulation of superoxide anion generation and metabolism.

In summary, the present study clearly demonstrates that hyperhomocysteinemia induces NADPH oxidase-mediated superoxide anion generation in the kidney leading to oxidative stress. Folic acid supplementation can effectively antagonize NADPH oxidase activation through inhibition of NOX4 and p22phox expression and hence abolish renal oxidative stress in hyperhomocysteinemic rats.

GRANTS

This study was supported by the Natural Sciences and Engineering Research Council of Canada. S.-Y. Hwang was a recipient of the Manitoba Health Research Council Studentship.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

REFERENCES

No conflicts of interest, financial or otherwise, are declared by the author(s).


