Disruption of cyclooxygenase-2 prevents downregulation of cortical AQP2 and AQP3 in response to bilateral ureteral obstruction in the mouse

Line Nilsson,1,2 Kirsten Madsen,3 Sukru Oguzkan Topcu,1,2 Boye L. Jensen,3 Jørgen Frøkiær,1,2 and Rikke Nørregaard1,2

1The Water and Salt Research Centre and 2Institute of Clinical Medicine, University of Aarhus, Aarhus; and 3Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark

Submitted 19 December 2011; accepted in final form 2 March 2012

Disruption of cyclooxygenase-2 prevents downregulation of cortical AQP2 and AQP3 in response to bilateral ureteral obstruction in the mouse. Am J Physiol Renal Physiol 302:F1430–F1439, 2012. First published March 7, 2012; doi:10.1152/ajprenal.00682.2011.—Bilateral ureteral obstruction (BUO) in rats is associated with increased cyclooxygenase type 2 (COX-2) expression, and selective COX-2 inhibition prevents downregulation of aquaporins (AQPs) in response to BUO. It was hypothesized that a murine model would display similar changes in renal COX-2 and AQPs upon BUO and that targeted disruption of COX-2 protects against BUO-induced suppression of collecting duct AQPs. COX-2−/− and wild-type littermates (C57BL/6) were employed to determine COX-1, -2, AQP2, and AQP3 protein abundances and localization after BUO. In a separate series, sham and BUO wild-type mice were treated with a selective COX-2 inhibitor, parecoxib. The COX-2 protein level increased in wild-type mice in response to BUO and was not detectable in COX-2−/− mice. COX-1 protein abundance was increased in sham-operated and BUO mice. Total AQP2 and -3 mRNA and protein levels decreased significantly after BUO in the cortex+outer medulla (C+OM) and inner medulla (IM). The decrease in C+OM AQP2 and -3 levels was attenuated/prevented in COX-2−/− mice, whereas there was no change in the IM. In parallel, inhibition of COX-2 by parecoxib rescued C+OM AQP2 and IM AQP2 protein level in wild-type mice subjected to BUO. In summary, 1) In C57BL/6 mice, ureteral obstruction increases renal COX-2 expression in interstitial cells and lowers AQP2-3 abundance and 2) inhibition of COX-2 activity by targeted disruption or pharmaceutical blockade attenuates obstruction-induced AQP downregulation. In conclusion, COX-2-derived prostaglandins contribute to downregulation of transcellular water transporters in the collecting duct and likely to postobstruction diureses in the mouse.

COX-2; parecoxib

Previous studies indicate that the cyclooxygenase (COX)-PG pathway may contribute to renal functional changes after ureteral obstruction (1, 16, 28). Two isoforms of COX have been identified, namely, COX-1 and COX-2. It has been demonstrated that 24-h bilateral ureteral obstruction (BUO) enhances PGE2 production in cortical and medullary tubules of the rat kidney (28), and we have recently demonstrated that COX-2 is the predominant isoform that is responsible for accumulation of PGE2, PGF2α, prostacyclin metabolite 6-keto-PGF1α, and thromboxane-2 in rat kidney tissue in response to BUO (18).

It is well established that BUO and release of BUO is associated with a marked decrease in renal aquaporin (AQP) levels and collecting duct water permeability (6, 12, 16). Previously, it was demonstrated that selective COX-2 inhibition prevents downregulation of AQP2 in response to BUO in the inner medulla (IM) (16–18) and restores urine output toward normal in the first hours after release of obstruction in rats (1). The major effect of prostaglandins on water transport appears to be mediated by the binding of PGE2 to the EP3 receptor, subsequently inhibiting increased intracellular cAMP, thereby hindering vasopressin-mediated delivery of AQP2 to the plasma membrane in cortical collecting duct principal cells (7, 25). However, a recent study showed that prolonged treatment with a selective EP3 receptor agonist of a mouse model in which the V2 vasopressin receptor (V2R) gene is conditionally deleted prevents downregulation of renal AQP2 levels, probably due to EP3 receptor-mediated elevation of cAMP levels in kidney collecting duct cells (14). Moreover, Olesen et al. (21) demonstrated that EP2 and EP4 agonists increase both AQP2 phosphorylation and trafficking. We have demonstrated that COX-2 knockout mice (COX-2−/−) exhibit lower urine concentrating ability despite increased AQP2 and AQP3 abundances (19). Taken together, these contradictory observations on the regulatory impact of prostaglandins on renal aquaporin abundance/water transport prompt investigations into model systems where the contribution from distinct components of the very redundant system can be defined more precisely. Thus, to gain insight into the role of COX-2 in the obstruction-induced renal AQP changes and overcome the inherent challenges associated with drug specificity in pharmacological approaches, we decided to transfer from a rat to a murine model system and employ mice with targeted disruption of COX-2. We hypothesized that complete ureteral obstruction in the mouse leads to increased renal COX-2 expression and COX-2-dependent downregulation of collecting duct AQP2 and AQP3. To address this question, COX-2−/− and wild-type littermate mice on a C57BL/6 background were used for the experiments. The mild developmental renal injury in COX-2−/− on a C57BL/6 background (19, 29) with higher levels of AQP2 and AQP3 was not considered a drawback to test the present hypothesis regarding downregulation of AQPs in response to BUO. Wild-type and COX-2−/− mice were subjected to BUO for 24 h, and renal tissue abundance and localization of COX-2, COX-1, and collecting duct AQP2 and
-3 were determined. To ensure that observations were caused by abolished COX-2 activity, experiments were repeated in wild-type mice that were treated with the selective COX-2 inhibitor parecoxib during 24-h BUO.

MATERIALS AND METHODS

COX-2-/- Mice

COX-2-/- mice on a mixed 129/C57 background were originally generated by Dinchuk et al. (3). The breeder pairs were obtained from The Jackson Laboratory (Bar Harbor, ME) on a predominant C57BL/6J background. Animals were further backcrossed to the C57BL/6J genetic background for two consecutive generations before they were used for experiments. Mice were housed at The Biomedical Laboratory, University of Southern Denmark and genotyped as previously described (5). All procedures conformed to the Danish National Guidelines for the care and handling of animals and the published guidelines from the National Institutes of Health. The animal protocols were approved by the board of the Institute of Clinical Medicine, Aarhus University, according to the licenses for use of experimental animals issued by the Danish Ministry of Justice.

Experimental Animals

Studies were performed in COX-2-/- and wild-type mice. The animals had free access to a standard rodent diet (Altromin, Lage, Germany) and tap water. During the experiments, animals were kept in individual cages, with a 12:12-h light-dark cycle, a temperature of 21 ± 2°C, and a humidity of 55 ± 2%. Animals were allowed to acclimatize to the cages 3–4 days before surgery. The animals were placed on anesthesia with isoflurane (Abbott Scanlon), and during the operation the animals were placed on a heating pad to maintain rectal temperature at 37–38°C. Through a midline abdominal incision, both ureters were exposed and then occluded with a silk ligature.

Animals were allocated to the protocols indicated below. Age- and time-matched, sham-operated controls were prepared and were observed in parallel with each BUO group in the following protocols.

Protocol 1. BUO was induced for 24 h in COX-2-/- and wild-type mice (n = 10). The kidneys were prepared for semiquantitative immunoblotting and quantitative PCR (QPCR; n = 6) or for immunohistochemistry (n = 4). Sham-operated controls were prepared in parallel (n = 9), and the kidneys were prepared for semiquantitative immunoblotting and QPCR (n = 6) or for immunohistochemistry (n = 3).

Protocol 2. Prior to surgery, wild-type mice were injected with a selective COX-2 inhibitor, parecoxib (Pfizer), dissolved in saline (5 mg·kg⁻¹·day⁻¹) for 7 days. Injections with saline as a control were conducted in parallel. BUO was induced for 24 h in mice in both parecoxib-treated (n = 5) and saline-treated (n = 6) mice. Sham-operated controls were prepared in parallel in both parecoxib-treated (n = 4) and saline treated (n = 6) mice. The kidneys were prepared for semiquantitative immunoblotting.

Administration of a dose at 5 mg·kg⁻¹·day⁻¹ parecoxib was chosen according to a pharmacological profile study of parecoxib (23).

Blood Sampling and Removal of Kidneys

Twenty-four hours after induction of BUO, mice were reanesthetized with isoflurane. Before death, the aortic bifurcation of the mouse was localized, dissected free, and a blood sample was collected for the determination of plasma electrolytes and osmolality. Rapidly, the kidneys were removed and dissected into the cortex and IM. The plasma concentrations of sodium, potassium, creatinine, and urea were measured (Vitros 950, Johnson&Johnson). Finally, the osmolality of the plasma was determined with a vapor pressure osmometer (Osmomat 030, Gonotec, Berlin, Germany).

Isolation of RNA and QPCR

Total RNA was isolated from mouse cortex and IM with a NucleoSpin RNA II mini kit according to the manufacturer’s instructions (Macherey-Nagel). RNA was quantitated by spectrophotometry and stored at −80°C. CDNA synthesis was performed on 0.5 μg RNA with an AffinityScript QPCR cDNA synthesis kit (Stratagene).

For QPCR, 100 ng cDNA served as a template for PCR amplification using Brilliant SYBR Green QPCR Master Mix according to the manufacturer’s instructions (Stratagene). Serial dilution (1 ng–1 μg) of cDNA was used as a template for generation of a standard curve. Nested primers were used to amplify standards and kidney cDNA samples: COX-2: sense 5'- GCA GCC ACG TGT CAA ACT GC-3'; antisense 5'-CTC GGA AGA GCA TCG CAG AGG-3'; GenBank accession no. NM_011198.2; AQP2: sense 5'-CTT CCT TCG AGC TGC CTT C-3'; antisense 5'-CAT GTG TGT GAG CAT TGA C-3'; GenBank accession no. NM_009699.2; AQP3: sense 5'-TGT GTG TAC TGG CCA TCG TT-3'; antisense 5'-GGT GAC GAA GCC AGA AGA AT-3'; GenBank accession no. AF104416.1; AQP4: sense 5'-GCA TCG CTA AGT CCG CCT TC-3'; antisense 5'-GGG AGT GAC CAG GAT GA-3'; GenBank accession no. U88623; and GAPDH: sense 5'-TAA AGG GCC TGC CTT GAC CT-3'; antisense 5'-TTA GTC CTT GCA GGA GCC CAT GCA GG-3'; GenBank accession no. M32599.1. Standards and unknown samples were amplified in duplicate in 96-well plates, and PCR was performed for 40 cycles consisting of denaturation for 30 s at 95°C followed by annealing and polymerization at 60°C for 1 min. Emitted fluorescence was detected during the annealing/extension step in each cycle. A post-run melting-curve analysis was performed to ensure

| Table 1. Body and kidney weight and plasma biochemical values from sham-operated and BUO wild-type and COX-2-/- mice |
|---|---|---|---|
| **Body weight, g** | **COX-2-/-** | **Wild-type** | **COX-2-/-** |
| Body weight, g | 21.6 ± 2.4 | 21.0 ± 1.5 | 22.4 ± 1.1 | 21.8 ± 1.2 |
| Kidney weight, mg/g body wt | 6.59 ± 0.20 | 4.99 ± 0.01† | 7.94 ± 0.00* | 7.03 ± 0.45* |
| Plasma creatinine, μmol/l | 7.3 ± 1.1 | 14.7 ± 2.4* | 234.5 ± 11.4* | 266.8 ± 16.3* |
| Plasma urea, mmol/l | 4.9 ± 0.3 | 24.6 ± 6.5* | 68.6 ± 1.8* | 86.9 ± 11.0* |
| Plasma osmolality, mosmol/kgH₂O | 317.2 ± 2.9 | 348.0 ± 12.7† | 412.8 ± 13.0* | 437.4 ± 17.4* |
| Plasma potassium, mmol/l | 4.5 ± 0.2 | 5.1 ± 0.4 | 8.6 ± 0.3*‡ | 9.7 ± 0.3*‡ |
| Plasma sodium, mmol/l | 142.8 ± 2.9 | 144.2 ± 2.9 | 142.1 ± 0.9 | 140.6 ± 1.0 |

Values are means ± SE. BUO, bilateral ureteral obstruction; COX, cyclooxygenase. *P < 0.05 BUO-operated compared with sham-operated mice. †P < 0.05 sham-operated wild-type compared with sham-operated COX-2-/- mice. ‡P < 0.05 BUO-operated wild-type compared with BUO-operated COX-2-/- mice.
only one amplification product. Selected samples were subjected to gel electrophoresis to confirm the expected size of the product and only one product.

Membrane Fractionation for Immunoblotting

The tissue [cortex + outer medulla (C+OM) and IM] was homogenized in dissecting buffer (0.3 M sucrose, 25 mM imidazole, 1 mM EDTA, pH 7.2) containing the following protease inhibitors: 8.5 μM leupeptin (serine and cysteine protease inhibitor, Sigma-Aldrich, St. Louis, MO) and 0.4 mM Pefabloc (serine protease inhibitor, Roche). The tissue was homogenized (30 s at 1,250 rpm) by an Ultra-Turrax T8 homogenizer (IKA Labortechnik) and then centrifuged at 4,500 g at 4°C for 15 min. Gel samples were prepared from the supernatant in Laemmli sample buffer contain-

Fig. 1. A: cyclooxygenase (COX)-2 mRNA level in cortical and outer medullary (C+OM) kidney tissue. B: semiquantitative immunoblots of COX-2 (Cayman 160126) expression in protein isolated from C+OM kidney tissue. C: semiquantitative immunoblots of COX-2 (Cayman 160126) expression in protein isolated from inner medullary (IM) kidney tissue. D: anti-COX-2 antibody was preincubated with an excess of the immunizing peptide. Semiquantitative immunoblots of COX-2 expression in protein isolated from IM kidney tissue in bilateral ureteral obstruction (BUO)-operated COX-2+/− and wild-type mice probed with an additional 2 COX-2 antibodies: Cayman 160106 and Abcam ab15191. E: immunohistochemical staining of COX-2 in IM tissue from BUO-operated wild-type mouse. COX-2 is localized in IM interstitial cells. F: immunohistochemical staining of COX-2 in IM tissue from BUO COX-2+/− mice showing no labeling of COX-2.
ing 2% SDS. The total protein concentration of the homogenate was measured using a Pierce BCA protein assay kit (Roche).

Electrophoresis and Immunoblotting

Samples of membrane fractionation from the different zones were run on 12% polyacrylamide minigels (Bio-Rad Protean II). For each gel, an identical gel was run in parallel and subjected to Coomassie staining. The Coomassie-stained gel was applied to determine identical loading or to allow for correction for minor variations in loading.

Samples were run on 12% polyacrylamide gels (Bio-Rad Protean II). Proteins were transferred to a nitrocellulose membrane (Hybond ECL RPN 3032D, Amersham Pharmacia Biotech). Afterward, the blots were blocked with 5% nonfat dry milk in PBS-T (80 mM Na2HPO4, 20 mM NaH2PO4, 100 mM NaCl, 0.1 Tween 20, adjusted to pH 7.4). After washing in PBS-T, the blots were incubated with primary antibodies overnight at 4°C. The antigen-antibody complex was visualized with horseradish peroxidase (HRP)-conjugated secondary antibodies (P448, diluted 1:3,000, Dako, Glostrup, Denmark) using the enhanced chemiluminescence system (ECL; Amersham Pharmacia Biotech). Immunolabeling controls were performed using peptide-absorbed antibody.

Primary Antibodies

For semiquantitative immunoblotting and immunohistochemistry, we used specific antibodies to renal COX-2 (160126 and 160106, Cayman Chemical, Ann Arbor, MI); COX-2 (ab15191, Abcam, Cambridge, Cambridge, MA) and COX-1 (ab32055, Abcam, Cambridge, MA)

Fig. 2. Effect of BUO on renal regulation of COX-1 protein abundance in COX-2−/− and wild-type mice. A: C+OM COX-1 abundance is significantly increased in sham-operated COX-2−/− mice compared with wild-type mice. COX-1 is significantly increased in response to BUO in both wild-type and COX-2−/− mice. B: IM COX-1 abundance is significantly increased in sham-operated COX-2−/− compared with sham-operated wild-type mice. IM COX-1 protein abundance is significantly increased in wild-type mice in response to BUO. *P < 0.05 BUO-operated compared with sham operated mice. †P < 0.05 sham-operated wild-type compared with sham-operated COX-2−/− mice. ‡P < 0.05 BUO-operated wild-type compared with BUO-operated COX-2−/− mice.

Fig. 3. Effect of BUO on C+OM regulation of aquaporin-2 (AQP2) in COX-2−/− and wild-type mice. A: in wild-type mice, C+OM AQP2 mRNA level is significantly decreased as an effect of BUO, but the downregulation is attenuated in COX-2−/− BUO mice. B: C+OM AQP2 protein abundance is significantly downregulated in wild-type BUO mice, but the downregulation is absent in COX-2−/− BUO mice. *P < 0.05 BUO-operated compared with sham-operated mice. †P < 0.05 BUO-operated wild-type compared with BUO-operated COX-2−/− mice. C–F: cortical immunohistochemical staining of AQP2 showed stronger labeling in COX-2−/− BUO mice compared with wild-type BUO mice. C: sham wild-type. D: sham COX-2−/−. E: BUO wild-type. F: BUO COX-2−/−.
bridge, UK); COX-1 (160109, Cayman Chemical); and AQP5, which had been well characterized in previous studies: AQP-2 (H7661) (15), pAQP2Ser256 (KO407) (2), AQP-3 (LL178AP) (4).

Immunohistochemistry

The kidneys from BUO and sham-operated control mice were fixed by retrograde perfusion via the abdominal aorta with 3% paraformaldehyde in 0.1 M cacodylate buffer, pH 7.4. Moreover, the kidneys were immersion fixed for 1 h and washed for 30 min with 0.1 M cacodylate buffer. The kidney blocks were dehydrated and embedded in paraffin. The paraffin-embedded tissues were cut in 2-μm sections on a rotary microtome (Leica Microsystems, Herlev, Denmark).

For immunoperoxidase labeling, the sections were deparaffinized and rehydrated. Endogenous peroxidase activity was blocked with 5% H2O2 in absolute methanol for 10 min at room temperature. To expose antigens, kidney sections were boiled in a target retrieval solution (1 mmol/l Tris, pH 9.0, with 0.5 mM EGTA) for 10 min. After cooling, nonspecific binding was prevented by incubating the sections in 50 mM NH4Cl in PBS for 30 min, followed by blocking in PBS containing 1% BSA, 0.05% saponin, and 0.2% gelatin. Sections were incubated with primary antibodies diluted in PBS with 0.1% BSA, 0.05% saponin, and 0.2% gelatin. Sections were incubated with HRP-conjugated secondary antibody (P448, goat anti-rabbit immunoglobulin, Dako) for 1 h at room temperature. After rinsing with PBS wash buffer, the sites of reaction were visualized using DAB chromogen or nickel-enhanced DAB chromogen.
antibody-antigen reactions were visualized with 0.05% 3,3'-diaminobenzidine tetrachloride (Kem-en Tek, Copenhagen, Denmark) dissolved in distilled water with 0.1% H2O2. The light microscope was carried out with Leica DMRE (Leica Microsystems).

Statistics

Values are means ± SE. Statistical comparison of two experimental groups was performed by an unpaired Student’s t-test. When several groups were compared, this was done by two-way ANOVA followed by post hoc analysis with a t-test and Bonferroni correction. P values < 0.05 were considered significant.

RESULTS

Effect of BUO on Kidney Weight, Plasma Electrolytes, Creatinine, and Osmolality in Wild-Type and COX-2−/− Mice

There was no significant difference between wild-type and COX-2−/− sham-operated mice with regard to body weight or plasma concentration of sodium and potassium (Table 1). At baseline, the kidney/body weight ratio was lower, and plasma urea, creatinine, and osmolality were elevated significantly in sham-operated COX-2−/− compared with wild-type mice (Table 1). After introduction of BUO in both wild-type and COX-2−/− mice, kidney weight, plasma osmolality, potassium, creatinine, and urea increased significantly compared with sham-operated control mice (Table 1). Apart from increased plasma potassium in COX-2−/− mice, there was no significant difference in the parameters between genotypes after BUO.

Fig. 6. Effect of BUO on IM regulation of AQP3 in COX-2−/− mice. A: IM AQP3 mRNA level is significantly decreased in response to BUO while it was suppressed below 5% of sham levels following obstruction in both genotypes (Fig. 3, A–F). Total AQP2 protein abundances in the IM did not differ between genotypes in sham-operated mice. After BUO induction, AQP2 protein abundances decreased equally in wild-type and COX-2−/− mice compared with sham-operated mice (Fig. 4B). However, total AQP2 protein was signif-

Effect of BUO on Renal AQP2 Abundance and Localization in Wild-Type and COX-2−/− Mice

In C+OM fraction, total AQP2 mRNA and protein abundance significantly decreased in wild-type BUO-operated mice compared with sham-operated wild-type mice. In BUO-operated COX-2−/− mice, downregulation of total AQP2 was attenuated at both mRNA and protein levels (Fig. 3, A and B). Immunohistochemistry of cortical sections demonstrated that wild-type mice subjected to BUO showed weaker labeling of AQP2 in the apical plasma membranes in collecting duct principal cells compared with sham-operated wild-type mice. COX-2−/− mice subjected to BUO showed stronger labeling of AQP2 compared with obstructed wild-type mice (Fig. 3, C–F).

AQP2 mRNA levels in the IM did not differ between sham-operated wild-type and COX-2−/− while it was suppressed below 5% of sham levels following obstruction in both genotypes (Fig. 4A). Total AQP2 protein abundances in the IM did not differ between genotypes in sham-operated mice. After BUO induction, AQP2 protein abundances decreased equally in wild-type and COX-2−/− mice compared with sham-operated mice (Fig. 4B). However, total AQP2 protein was signif-
significantly decreased in COX-2−/− compared with wild-type mice after BUO.

The pAQP2 protein level in C+OM did not differ between genotypes as well as sham-operated control and BUO-operated mice. In the IM, pAQP2 was significantly suppressed in both genotypes after BUO compared with wild-type mice (data not shown).

Effect of BUO on Renal AQP3 Abundance and Localization in Wild-Type and COX-2−/− Mice

AQP3 mRNA levels did not differ between genotypes in C+OM in sham-operated mice (Fig. 5A). However, at the protein level AQP3 was increased in the COX-2−/− mice (Fig. 5B). Upon obstruction, AQP3 mRNA and protein levels in C+OM decreased significantly in wild-type mice, while deletion of COX-2 rescued the AQP3 protein level and improved the AQP3 mRNA level (Fig. 5, A and B). Immunohistochemical labeling of kidney sections for AQP3 demonstrated that sham-operated wild-type mice displayed a less marked labeling pattern associated with cortical collecting duct basolateral membranes compared with COX-2−/− mice (Fig. 5, C vs. D). After obstruction, wild-type mice exhibited labeling close to the detection threshold, while labeling of COX-2−/− kidneys subjected to BUO was indistinguishable from sham-operated COX-2−/− mice (Fig. 5, E and F).

In the IM, AQP3 mRNA was not different between COX-2−/− and wild-type mice, while at the protein level AQP3 was significantly increased in the sham-operated COX-2−/− mice compared with wild-type. AQP3 mRNA level decreased significantly after BUO in COX-2−/− and wild-type compared with sham-operated mice, while at the protein level AQP3 was only significantly reduced in the wild-type BUO-operated mice (Fig. 6, A and B).

Effect of BUO on Renal AQP Abundance in Parecoxib-Treated and Control Mice

A last series of experiments tested the effect of a COX-2 inhibitor in sham-operated and BUO wild-type mice. Wild-type mice were treated with a COX-2 inhibitor and then subjected to sham operation or BUO, and changes in COX-1, AQP2, and -3 protein abundances were analyzed.

To examine the effect of the COX-2 inhibitor parecoxib, the cortical COX-2 mRNA level was measured in treated and untreated control mice, which demonstrated threefold increase...
in COX-2 expression in response to parecoxib treatment compared with control mice (COX-2/β-actin ratio: 1.03 ± 0.31 vs. 0.31 ± 0.03, P < 0.05) (10, 16). The COX-1 protein level was increased in BUO-operated mice compared with sham-operated mice in both C+OM and IM (Fig. 7, A and D), although it did not reach a significant level in the IM (P = 0.057). Parecoxib treatment significantly increased COX-1 protein in C+OM in sham-operated mice. AQP2 protein abundance was not significantly regulated in C+OM in sham-operated control mice, but there was a tendency of upregulation in response to parecoxib (Fig. 7B). In BUO-operated mice, there was a tendency toward a downregulation of AQP2 compared with sham-operated mice, although it was not significant. In the IM, AQP2 protein abundance was decreased in response to BUO, and this downregulation was attenuated by administration of parecoxib (Fig. 7E). In response to BUO, there was a significant downregulation of pAQP2 in the IM. Treatment with parecoxib increased pAQP2 in C+OM in sham-operated mice (data not shown). AQP3 protein abundance was significantly decreased in BUO-operated compared with sham-operated mice in C+OM (Fig. 7C), and a tendency of downregulation in the IM (Fig. 7F). Administration of the selective COX-2 inhibitor parecoxib partly attenuated the decreased AQP3 protein level in C+OM after BUO.

Immunohistochemical staining of cortical sections displayed a weaker apical AQP2 labeling in collecting duct principal cells in BUO-operated mice compared with sham-operated mice (Fig. 8, A vs. C). Cortical labeling of AQP3 showed that vehicle-treated mice subjected to BUO display weaker labeling in the basolateral plasma membranes in collecting duct principal cells compared with sham-operated, vehicle-treated mice (Fig. 8, E vs. G). Parecoxib-treated, BUO-operated mice exhibited stronger labeling of AQP3 compared with obstructed vehicle-treated mice, indistinguishable from sham-operated, parecoxib-treated mice (Fig. 8, E–H).

DISCUSSION

The present study shows that BUO in wild-type mice leads to a significant induction of COX-1 and COX-2 protein and downregulation of AQP2 and -3. COX-2 displayed the largest increase after BUO and was associated with renomedullary interstitial cells. C57BL/6 mice with disrupted COX-2 (COX-2−/−) were protected from BUO-induced suppression of AQP2 and -3 in C+OM tissue despite compensatory stimulation of COX-1 protein at baseline. This protection of AQP decreased protein levels by disruption of COX-2 was partially recapitulated by administration of a specific COX-2 blocker to wild-type BUO-operated mice. Thus C57BL/6 mice appear as a valid model that reproduces acute downregulation of AQPs after BUO in rats, and the data might indicate that downregulation of AQP2 and AQP3 after release of BUO and subsequent acute polyuria is mediated mainly by COX-2-derived prostaglandins.

A minor difference in rescue of AQPs in the IM between COX-2−/− (absent protection) and parecoxib-treated wild-type mice was detected. This difference is likely caused by upregulated COX-1 in COX-2−/− mice and attenuated COX-1 activity (lower abundance compared with COX-2−/− and partial nonselective inhibition) in wild-type mice treated with parecoxib.

Changed COX-2 and COX-1 Protein Level in COX-2−/− and Wild-Type Mice in Response to BUO

BUO increases cortical and medullary COX-2 compared with sham-operated mice, and this increase is abolished in COX-2−/− mice. Consistent with previous rat studies, the present study shows that COX-2 is increased in renal medullary interstitial cells in response to BUO (16, 18).

As observed recently (19), the present data confirmed that mice deficient in COX-2 display a compensatory upregulation of COX-1 and further showed that COX-1 was stimulated by BUO in the cortex. Thus the mice exhibit a larger sensitivity to BUO with more widespread upregulation of COX in kidney tissue compared with rats, for example, where cortical COX-1...
Effect of BUO on Renal AQP2 and AQP3 in COX-2−/− Mice

The present study documented downregulation of renal AQPs in response to BUO in mice, consistent with several previous rat studies (11, 16). The downregulation of cortical AQP2 and AQP3 in response to BUO was attenuated in COX-2−/− mice, whereas no rescue of AQP2 and AQP3 levels was observed in the IM. Why did COX-2 inhibitor experiments show protection of AQP2 abundance after BUO in the IM, similar to in rats (16), while BUO-induced suppression of AQP2 in the IM of COX-2−/− mice was not attenuated? A likely explanation is that the compensatory upregulation of COX-1 by BUO that may supply downstream PGE synthase with substrate even in the absence of functional COX-2. At baseline, there are 25 times higher COX-1 levels in the IM compared with the cortex (9). A similar gradient in the mouse with further COX-1 upregulation by BUO in COX-2−/− mice could account for maintained or even increased prostaglandin synthesis. Parecoxib at 5 mg/kg is likely also to have some nonselective inhibitory action on COX-1 (24, 26), which may account for the modest, but significant, attenuation of AQP2 downregulation in the IM after BUO. The results further support that in the setting of BUO, COX-2-derived prostanooids either directly or by indirect pressure-related effects suppress transcellular water uptake pathways in the collecting duct. Recent observations show that PGE2 through EP2/EP4 receptors in rare situations (loss-of-function mutations in the vasopressin receptor) may actually preserve collecting duct AQPs and support urine concentrating ability (14). In BUO, there is significant stimulation of prostaglandin synthesis in the renal medulla, while in nephrogenic diabetes insipidus, medullary prostaglandin synthesis is maximally suppressed (8, 18, 28). These very different physiological settings probably account for the different roles associated with prostaglandins to control AQPs.

In summary, the present data show that 1) the mouse essentially recapitulates the observations from the rat that ureteral obstruction induces renal COX-2 expression and lowers aquaporin abundance and 2) inhibition of COX-2 activity by targeted disruption or pharmacological blockade in the mouse attenuates obstruction-induced AQP downregulation. The data further support that COX-2-derived prostaglandins contribute to postobstruction diureses and mice with targeted disruption of key signaling molecules could be employed to dissect the cellular events that injure kidney structure and function after ureteral obstruction.

ACKNOWLEDGMENTS
The authors thank Gitte Skou, Gitte Kall, Inger Merete Paulsen, and Line V. Nielsen for expert technical assistance.

GRANTS
The Water and Salt Research Centre at the University of Aarhus is established and supported by the Danish National Research Foundation (Danmarks Grundforskningsfond). The studies were supported by the Commission of the European Union (EU Action Programs), Danish Research Council for Health and Disease, Lundbeck Foundation, Helen and Ejnar Bjørnow Foundation, NOVO Nordisk Foundation, Aase and Ejnar Danielsen Foundation, and AP Møller Foundation.

DISCLOSURES
No conflicts of interest, financial or otherwise, are declared by the authors.

AUTHOR CONTRIBUTIONS

REFERENCES

