Renalase regulates renal dopamine and phosphate metabolism

Daria Sizova,1,2 Heino Velazquez,1,2 Benedita Sampaio-Maia,3 Janete Quelhas-Santos,3 Manuel Pestana,3 and Gary V. Desir1,2

1Department of Medicine, Yale University School of Medicine, New Haven, Connecticut; 2VACHS Medical Center, West Haven, Connecticut; and 3Nephrology Research and Development Unit, Faculty of Medicine and Dental Medicine, University of Porto, Hospital S. João, Porto, Portugal

Submitted 31 October 2012; accepted in final form 10 July 2013

Renalase regulates renal dopamine and phosphate metabolism. Am J Physiol Renal Physiol 305: F839–F844, 2013. First published July 17, 2013; doi:10.1152/ajprenal.00616.2012.—Renalase is a kidney-secreted catecholamines-degrading enzyme whose expression and activity are downregulated by increased dietary phosphate. A renalase knockout (KO) mouse model was used to explore the mechanisms mediating renalase’s effect on phosphate excretion. Compared with wild-type (WT) mice maintained on a regular diet, KO mice show decreased serum PO4 (KO = 5.3 ± 0.2 vs. WT = 6.0 ± 0.1, n = 6; P < 0.04) and increased urinary PO4 excretion (urine PO4/creatinine: KO = 7.7 ± 0.3 vs. WT = 6.1 ± 0.3, n = 6; P < 0.02). However, both WT and KO mice respond similarly to PO4 restriction by increasing renal COMT-1 activity and markedly decreasing PO4 excretion, which excludes an intrarenal defect in the KO. Renal sodium-phosphate cotransporter Npt2a, sodium proton exchanger NHE3 expression, and MAO-B and A activity did not differ between WT and KO. Only catechol-O-methyl transferase (COMT) expression and activity were significantly increased in KO mice. Despite that, urinary dopamine excretion by twofold, whereas urinary l-DOPA excretion decreased by twofold in the KO mouse, indicating an upregulation of renal dopamine (DA) synthesis. These data indicate that renalase deficiency is associated with increased renal DA synthesis, stimulated PO4 excretion, and moderately severe hypophosphatemia. The signal to increase renal DA synthesis is strong since it overcomes a compensatory increase in COMT activity.

Renalase regulates renal dopamine and phosphate metabolism.

Address for reprint requests and other correspondence: G. Desir, Section of Nephrology, Dept. of Medicine, Yale School of Medicine, P.O. Box 208029, New Haven, CT 06520-8029 (e-mail: gary.desir@yale.edu).

http://www.ajprenal.org 1931-857X/13 Copyright © 2013 the American Physiological Society
and COMT, it is secreted in urine (13). In the present work, we used renalase mouse KO model to further investigate the role of renalase in renal phosphate excretion and find that renalase deficiency increases urinary DA and leads to phosphate wasting and hypophosphatemia.

MATERIALS AND METHODS

Animal genotyping, dieting, and tissue collection. All animal experiments were conducted in accordance with the National Institutes of Health Guidelines for the Care and Use of Laboratory Animals, and with protocols approved by institutional animal care and use committee of VA Connecticut Healthcare System. Renalase KO mice (29) and WT controls of the same genetic background were identified by PCR of tail genomic DNA (WT, 499-bp product, WT forward primer 5'-AAATCCCCAGT-TACTTTAGGCTCC-3' and WT reverse primer 5'-gagacagtgacagagaaaaaccgcac-3'; KO, 292-bp product, KO forward primer 5'-AGGCTATTCGGCTATGACTGGG-3' and KO reverse primer 5'-TGGATCTTTTCTCAGGGCAGG-3'). Age-matched animals (5–7 mo old) were fed low (Teklad custom diet, 0.1% phosphate), regular (Teklad global 0.6% phosphate, 18% protein rodent diet), or high-phosphate diet for 4 consecutive days. Mice were anesthetized using 30% isoflurane solution in 1,2-propanediol and then subjected to retro-orbital bleeding. Blood samples were incubated 45 min at room temperature, and serum supernatant was separated after 15 min at 1,500 RPM, room-temperature centrifugation. Urine samples were collected in metabolic cages (Lab Products, Seaford, DE) every 24 h for 5 consecutive days (24 h on regular diet followed by 4 days on low-Pi diet). Urine creatinine as well as serum and urine phosphate levels were assessed by VA Analytical Laboratory (VAMC, West Haven, CT).

Gene expression analysis. Total RNA from tissue samples was extracted using RNA-Bee solution (Tel-test, Friendswood, TX) and converted into cDNA using a high-capacity cDNA reverse transcription kit (Applied Biosystems, Foster City, CA). Levels of monoamine oxidase A (MAO-A), monoamine oxidase B (MAO-B), COMT-1, sodium-dependent phosphate transport protein 1 (Npt1), sodium-dependent phosphate transport protein 2A (Npt2a), sodium-dependent phosphate transport protein 2C (Npt2c), and Renalase mRNAs in kidney, heart, liver, and brain tissues were assessed by real-time PCR (TaqMan) and normalized to the corresponding levels in WT samples on low-phosphate diet (defined as 1.0). TaqMan assay mixtures were used: Mm00558004_m1 (MAO-A), Mm00555412_m1 (MAO-B), Mm00514377_m1 (COMT-1), Mm00436577_m1 (Npt1), Mm00441450_m1 (Npt2a), Mm0051746_m1 (Npt2c), Mm00725038_m1 (Renalase), as well as mouse GAPDH endogenous control assay, and TaqMan Universal PCR Master mix (Applied Biosystems, Foster City, CA). Real-time PCRs were carried on Eppendorf Realplex Masterscycler machine, and the resulting Ct values were analyzed using the 2-ΔΔCT method.

Serum Pi, and urinary DA measurements. Blood samples were collected from renalase KO and WT mice fed regular, low-, or high-phosphate diet for 4 consecutive days. Mice were anesthetized using 30% isoflurane solution in 1,2-propanediol and then subjected to retro-orbital bleeding. Blood samples were incubated 45 min at room temperature, and serum supernatant was separated after 15 min at 1,500 RPM, room-temperature centrifugation. Urine samples were collected in metabolic cages (Lab Products, Seaford, DE) every 24 h for 5 consecutive days (24 h on regular diet followed by 4 days on low-Pi diet). Urine creatinine as well as serum and urine phosphate levels were assessed by VA Analytical Laboratory (VAMC, West Haven, CT). DA and L-DOPA levels were assayed by HPLC with electrochemical detection (HPLC-ED) (lower limit of detection of ~350 fmol), as previously described (27).

Enzymatic activity assays. MAO-A and MAO-B activities were tested using the AmplexRed kit (Invitrogen, Grand Island, NY). This assay is based on detection of H2O2 (produced as a result of MAO-A/B activity) in a reaction producing resorufin, a stable substance with fluorescence maximum at 585 nm. Kidney tissue was homogenized in ice-cold protein extraction buffer [10% glycerol, 10 mM NaCl, 1 mM

![Image](http://ajprenal.physiology.org/)

Fig. 1. Hypophosphatemia and Pi wasting in renalase knockout (KO) mice. A: animals [KO mice, n = 5; wild-type (WT) mice, n = 5] maintained on a regular PO4 diet for 4 days. B: animals (KO mice, n = 6; WT mice, n = 6) maintained 24 h on regular PO4 diet, then 4 days on regular PO4 diet. C: animals (KO mice, n = 6; WT mice, n = 6) maintained on low PO4 diet. D: animals (KO mice, n = 6; WT mice, n = 6) maintained 24 h on regular PO4 diet, then 4 days on low PO4 diet. Filled columns are KO mice, and open bars are WT controls. *Significant difference (P < 0.05).
EDTA, 0.5 mM DTT, 25 mM BisTris, pH 6.5, Protease Inhibitor Cocktail tablet (Roche), and 500 μg of resulting kidney protein extract was used per well. MAO-A and MAO-B activities were distinguished by using different substrates (p-Tyramine for both MAO-A and MAO-B and benzylamine for MAO-B only) and specific inhibitors (clorgyline for MAO-A and pargyline for MAO-B). Five WT and five KO kidneys were used per each diet; differences with $P < 0.05$ (Student’s unpaired t-test) were reported as statistically significant.

COMT-1 activity was assessed by $[^{3}H]$-methyl group transfer assay (24). This test is based on organic solvent extraction that separates the radioactive product (methylated catechol) from free radioactive coenzyme (^{3}H-SAM). Total protein extract was prepared as described for MAO-A/B activity test, and 100 μl of resulting extract was used per sample. Tolcapone (5 μl) (COMT-1 inhibitor) was added to control samples to detect the baseline signal. Betafluor (National Diagnostics, Charlotte, NC) scintillation fluid was used for efficient separation of organic and water phases.

AADC activity was determined as previously described by Soares-da-Silva (27) using l-DOPA as substrate (100–10,000 μM, Sigma). Fragments of renal cortex were homogenized at 4°C with a Thomas Teflon homogenizer (Poliscience) in the incubation medium containing (in mM) 0.35 NaH$_2$PO$_4$, 0.15 Na$_2$HPO$_4$, 0.11 Na$_2$B$_4$O$_7$ and 0.2 pyridoxal phosphate (pH 7.0). The assay of dopamine was performed by HPLC with electrochemical detection.

Western blotting and immunofluorescence assay. For immunofluorescence (IF) studies, the kidney was perfusion-fixed with paraformaldehyde. IF and Western blot were performed using methods previously described (7, 8). For Western blot analysis, brush-border membrane vesicles were obtained as previously described (14). The megalin NHE3 and Npt2a polyclonal antibodies were gifts of Dr. Biemesderfer (Yale School of Medicine).

Statistical analysis. Standard unpaired Student’s t-tests were used for group comparisons at equivalent periods. All data are means ± SE, and $P < 0.05$ was accepted as a statistically significant difference.

RESULTS

Hypophosphatemia and phosphate wasting in renalase KO mice. The proximal tubule mediates phosphate absorption. Since the renalase gene is highly expressed in kidney, and the protein is almost exclusively found in the proximal tubule (15), we tested whether renalase deletion affected PO$_4^-$ excretion. Compared with WT mice, KO animals maintained on a regular diet, containing 0.9% P, have significantly lower serum PO$_4^-$ (Fig. 1A) and higher urinary PO$_4^-$ excretion (Fig. 1B). To test whether renalase KO animals could regulate renal P$_i$ absorption, adaptation to PO$_4^-$ deprivation was examined and compared with that of WT. Although KO mice fed a low-PO$_4^-$ diet for 4 days had lower serum PO$_4^-$ than WT mice (Fig. 1C), urinary excretion decreased in both WT and KO (Fig. 1D). The magnitude of the decrease in P$_i$ excretion was greater in KO up to day 3, and at day 4 both groups were equivalent (Fig. 1D). Serum PO$_4^-$ normalized in renalase KO mice maintained on a high-P$_i$ diet for 4 days (high-P$_i$ diet, 6.52 ± 0.23 mg/dl; regular-P$_i$ diet, 4.63 ± 0.11 mg/dl; $n = 4$; $P = 0.001$).

In KO animals on regular P$_i$ diet, the daily urinary excretion of DA increased twofold compared with WT (Fig. 2A). A low-P$_i$ diet markedly decreased DA excretion (357 ± 42 pmol/24 h; $n = 4$; $P < 0.05$) at day 4 in renalase KO mice. COMT-1 expression (Fig. 2B) and activity (Fig. 2C) increased in both WT and KO maintained on a low P$_i$ diet. MAO-A activity (V_{max}; mmol·mg protein$^{-1}$·h$^{-1}$) was unchanged (WT = 12.09 ± 0.87; KO = 10.45 ± 0.55; $n = 8$), and MAO-B activity decreased (WT = 1.77 ± 0.07; KO = 1.22 ± 0.05; $n = 8$; $P < 0.05$). These data indicate that KO mice respond normally to PO$_4^-$ deprivation by upregulating COMT-1 activity to reduce urinary DA levels and subsequently increase PO$_4^-$ absorption.

Sodium/phosphate cotransporters expression unchanged in renalase KO. We next tested for differences in expression of phosphate transporters between KO and WT mice. Npt1 gene expression was decreased in KO (Fig. 3A), while Npt2a and Npt2c gene expression did not differ between KO and WT (Fig. 3A). Renal expression of Npt2a and NHE3 proteins were not different between WT and KO maintained on a regular P$_i$ diet (Fig. 3B and C).

Increased urinary DA and renal DA synthesis in renalase KO. Since COMT degrades DA, increased renal activity in the KO would be expected to decrease renal DA, facilitate PO$_4^-$
absorption, and prevent hypophosphatemia. However, despite increased COMT activity, the daily urinary excretion of DA increased twofold in KO mice maintained on a regular diet (Fig. 2A). Renalase metabolizes L-DOPA and DA, with the former being the preferred substrate (15); therefore, increased urinary DA in KO mice could be the result of decreased DA metabolism and increased synthesis. Although renal tubular AADC activity was unchanged in KO mice (Fig. 4A; Table 1), there was a marked decrease in urinary excretion of L-DOPA (Fig. 4B), indicating increased L-DOPA uptake by the proximal tubule, and increased DA synthesis.

DISCUSSION

The regulation of phosphate transport in vivo involves short-term adaptive processes occurring within hours of changes in PO₄ intake, and including PO₄ sensing in the intestine, and the release or synthesis of molecules that alter the efficiency of renal PO₄ transport (4). The intrarenal DA system is a key modulator of renal PO₄ excretion (11). Increased PO₄ intake stimulates renal DA synthesis, and luminal DA inhibits proximal tubular PO₄ reabsorption (13). The proximal tubule synthesizes DA from filtered L-DOPA, and accounts for most of the urinary DA. Luminal entry of L-DOPA is mediated in part by the solute carrier family 3 member-1 (SLC3A1/SLC7A9 or rBart/b0,AT), a high affinity L-DOPA carrier, whereas transport at the basolateral membrane occurs through the low-affinity transporter SLC7A8 (23). In PT cells, L-DOPA is converted to DA by AADC.

Fig. 3. Renal sodium-phosphate cotransporter (Npt) expression unchanged in Renalase KO. Npt1, sodium-phosphate cotransporter SLC17A1; Npt2a, sodium-phosphate cotransporter 2A SLC34A1; Npt2c, sodium-phosphate cotransporter 2C SLC34A3; Npt2a, sodium-phosphate cotransporter 2A SLC34A1; NHE3, sodium protein exchanger 3 SLC9A3. A: animals maintained on regular PO₄ diet, gene expression measured by qPCR. Bars show means ± SE (n = 6). B: brush-border membrane vesicles obtained from animals maintained on regular PO₄ diet. Representative data are shown (n = 3); signal intensity is normalized to gamma-glutamyl transpeptidase (γ-GT) loading control. P value is not significant for Npt2a and NHE3, WT vs. KO. C: Npt2a protein expression (orange labeling) measured by immunofluorescence; representative data are shown (n = 3). **Significant difference (P < 0.01).

Fig. 4. Increased renal DA synthesis in renalase KO animals maintained on regular PO₄ diet. A: aromatic L-amino acid decarboxylase (AADC). B: urinary L-DOPA excretion (n = 9–11). *Significant difference (P < 0.05).
Increased DA delivery could increase and perhaps stimulate DA synthesis. It would be interesting to investigate whether increased urinary DA in the renalase KO mice is associated with changes in DA receptor expression and phosphorylation, and intracellular signaling. In summary, the renal DA system is upregulated in renalase KO mice. Increased urinary DA results in inappropriately high urinary PO₄⁻ excretion, which prevents animals maintained on normal- or low-Po4 diet to remain in PO₄⁻ balance. The signal to increase renal DA production is unclear, and we speculate it may be part of a homeostatic mechanism designed to counteract the rise in blood pressure caused by renalase deficiency.

DISCLOSURES
Renalase patents issued to G. V. Desir.

AUTHOR CONTRIBUTIONS

REFERENCES

In the steady state, luminal DA concentration is a function of the rates of synthesis and degradation. The MAO-A, MAO-B, and COMT participate in renal DA metabolism (1). Once DA is secreted into luminal fluid, it is not reabsorbed and cannot be regulated by these intracellular enzymes. Furthermore, it is reported that the selective or combined inhibition of MAO-A and COMT does not alter the daily urinary excretion of DA, sodium, or PO₄⁻ in rats (22). These results could be explained by the action of renalase in luminal fluid. Indeed, its enzymatic activity is insensitive to MAO and COMT inhibitors (30), and, by the action of renalase in luminal fluid, it is secreted into luminal fluid, it is not reabsorbed and cannot be regulated by these intracellular enzymes. Furthermore, it is reported that the selective or combined inhibition of MAO-A and COMT does not alter the daily urinary excretion of DA, sodium, or PO₄⁻ in rats (22). These results could be explained by the action of renalase in luminal fluid. Indeed, its enzymatic activity is insensitive to MAO and COMT inhibitors (30), and, in contrast to these enzymes, it is secreted by the proximal tubule into luminal fluid and is well suited to regulate luminal fluid 1-DOPA and DA levels.

In the present study, we find that renalase KO mice maintained on a regular diet excrete PO₄⁻ inappropriately and develop hypophosphatemia. The increased renal PO₄⁻ excretion is due to a twofold increase in urinary DA in KO mice. The changes in PO₄⁻ excretion and urinary DA documented in KO mice maintained on a regular diet are similar in magnitude to those observed in WT mice fed a high-PO₄⁻ diet (28). Npt2a gene and protein expression in kidney were unchanged despite high urinary DA. Since increased urinary DA is associated with internalization of Npt2a (3), one would have expected to see a decrease in plasma membrane Npt2a levels in renalase KO mice. Perhaps the reason we did not detect any significant differences is that chronic elevations of urinary DA lead to moderately severe hypophosphatemia, which in turn would stimulate proximal tubular reabsorption by upregulating Npt2a expression and activity. So the observed steady-state expression level of Npt2a in renalase KO mice reflects the balance between counteracting signals, namely elevated urinary DA and decreased serum phosphate, which would decrease and increase Npt2a expression, respectively.

Among the circulating catecholamines, renalase preferentially metabolizes epinephrine (kcat = 66.46 min⁻¹) (23). It does metabolizes DA (kcat = 0.11 min⁻¹), but it is not yet known whether the rate is fast enough to mediate a direct, in vivo action on DA levels. Renalase also metabolizes 1-DOPA (kcat = 42.32 min⁻¹), and, in renalase-deficient mice, 1-DOPA delivery could increase and perhaps stimulate DA synthesis. It is also possible that the renal dopaminergic system is upregulated in renalase KO mice in an attempt to maintain sodium balance and mitigate the rise in blood pressure associated with renalase deficiency (Fig. 5). The marked decrease in urinary 1-DOPA observed in the renalase KO mice strongly supports the notion of an increased renal DA synthesis. It would be interesting to investigate whether increased urinary DA in the renalase KO is associated with changes in DA receptor expression and phosphorylation, and intracellular signaling.

In summary, the renal DA system is upregulated in renalase KO mice. Increased urinary DA results in inappropriately high urinary PO₄⁻ excretion, which prevents animals maintained on normal- or low-Po4 diet to remain in PO₄⁻ balance. The signal to increase renal DA production is unclear, and we speculate it may be part of a homeostatic mechanism designed to counteract the rise in blood pressure caused by renalase deficiency.

![Fig. 5. Mechanism of hypophosphatemia in renalase deficiency. BP, blood pressure; Na⁺, total body sodium; DA, urinary DA; PO₄⁻, phosphate.](https://example.com/fig5.png)
RENALASE REGULATES RENAL DOPAMINE AND PHOSPHATE METABOLISM